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Abstract: The well-known van’t Hoff equation in chemical thermodynamics has been extended by making use of the van’t 

Hoff isotherm, and the relationship between standard Gibbs energy of reaction ∆��° and the total entropy change ∆����. The 

resulting expression and its usefulness in studying the effect of temperature on the equilibria of exothermic and endothermic 

processes have been discussed in detail. The central role that the total entropy change plays in determining the dependence of 

equilibrium constant Keq on temperature T has been emphasized. 
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1. Introduction 

A very useful expression in chemistry to quantitatively 

determine the variation of equilibrium constant Keq with 

temperature is the van't Hoff's law or the so-called van't 

Hoff's equation [1] commonly expressed as 
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� �

��
�                    (1) 

The symbol ∆rH
°
 refers to the standard enthalpy change of 

the reaction system under consideration and Ti and Tf, 

respectively, denote the temperatures at the beginning and 

end of the process. The standard state condition of the system 

is obtained by maintaining it under a constant pressure of 1 

bar. In essence equation (1) says that knowing the value of 

equilibrium constant at one temperature one can determine its 

value at some other temperature provided one knows the 

value of standard enthalpy change of the reaction process 

under consideration [2–7]. The physical basis behind the 

variation of equilibrium constant with temperature is usually 

discussed in terms of the effect of T on the standard Gibbs 

energy change, ∆rG
°
 of the reaction system [2]. The actual 

dependence of Keq on temperature, that is its behavior when 

Keq is plotted as a function of 1/T, depends on the sign of 

∆rH
° 
and the van’t Hoff equation provides a theoretical basis 

of this dependence [2, 3]. 

No doubt such an analysis, based on the role of standard 

Gibbs energy of reaction, is a valid and accurate one to begin 

with it is, however, not the most general one. Recently, 

therefore, another related thermodynamical analysis of the 

problem that has gained ground [4] is in terms of the total 

entropy change ∆Stot; more specifically ∆Stot = ∆Ssur + ∆Ssys= 

– ∆rH
°
/T + ∆rS

°
. Here ∆Ssys and ∆Ssur, respectively, denote the 

entropy changes of the system and surroundings, and ∆rS
°
 

denotes the standard entropy change of the reaction system 

under consideration. This later analysis, therefore, relies on 

the relative importance of the magnitudes of the entropy 

changes of the reaction system and its immediate 

surroundings. As per this viewpoint, when the reaction 

process is exothermic the term –∆rH
°
/T contributes a positive 

entropy change to the surroundings, thus favoring the 

formation of product species. This contribution is fairly large 

at low temperatures. However, as the temperature of the 

reaction system is raised the magnitude of –∆rH
°
/T term 

decreases. At higher temperatures, therefore, the extent of 

decrease may be such that the importance of the increasing 

entropy of the surroundings has a less significant role to play. 

As a consequence the equilibrium in such a case lies less 

towards the product side decreasing the value of equilibrium 

constant. In the case of an endothermic reaction the main 

contributing factor is the increase in entropy of the reaction 

system as a result of the energy as heat soaked up from the 

surroundings and the importance of the unfavourable entropy 

change of the surroundings ∆Ssurr = –∆rH
°
/T gets reduced at 

higher temperatures and the reaction process shifts towards 

the product side as the temperature is increased, increasing 

the magnitude of equilibrium constant. This is a more 

fundamental origin of the behavior of equilibrium constant 
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towards temperature not the change in the value of ∆rG
°
. The 

reason being that entropy is a fundamental property of the 

universe while free energy is a contrived or subsidiary 

property of the system [8]. Now because constraints on the 

use of change in the Gibbs free energy function, which is 

entropy change in disguise, affects its range of applicability 

[9], it is desirable to have a quantitative expression 

underlying the more fundamental explanation. It turns out 

that the van’t Hoff equation can be extended and one can in 

that way obtain an alternative expression, similar to van’t 

Hoff’s yet quite different from it, underlying this most 

general explanation. 

2. The Extended Van’t Hoff Equation 

A very well-known expression in chemical 

thermodynamics [10] is the relation between standard Gibbs 

energy of reaction ∆�G° and the total entropy change ∆Stot : 

∆��° = −T∆����                                (2) 

∆Stot is sometimes also called ∆Suniverse or ∆Sisolated but we 

won’t use such designations here. For us the universe will 

consist of the system and its immediate surroundings as is 

usually the case in a typical chemistry laboratory [9, 11]. 

Another very important result from thermodynamics that we 

use here to extended the van’t Hoff equation is the relation 

between equilibrium constant and standard reaction Gibbs 

energy or the so-called van’t Hoff’s isotherm: 

∆��°= −��	
� !                              (3) 

Comparison of equations (2) and (3) leads to the important 

expression: 

∆���� = �	
� !                                 (4) 

Above result can also be rearranged into 

K#$ = e∆&'('/*                                 (5) 

Although equation (5) does give some indication of the 

role that ∆ ����  plays in determining the behavior of 

equilibrium constant towards temperature it is useful to 

appreciate the role of ∆���� more fully. Furthermore, the full 

significance of equation (5) only becomes clear after one has 

extended the van’t Hoff equation. To this end we first rewrite 

equation (1) in the form given below (using an important 

logarithmic law lnab = lna – lnb where a & b are constant 

numbers): 

	
� !(�+)  − 	
� !(�,) =  ∆��° - 1
�, − 1

�+/ 

Then we substitute equation (4) into the left hand side of 

above equation to yield: 

∆����(�+)
� − ∆����(�,)

� = ∆��°
� - 1

�, − 1
�+/ 

The above expression can very easily be rearranged to give 

finally 

∆������+� = ∆����(�,) +  ∆��° � �
�� − �

���       (6) 

This is our extended van’t Hoff equation, which may also 

be called the total entropy equation. 

3. Discussion 

The effect of temperature on equillibria of exothermic and 

endothermic processes can be very generally explained by 

the extended van’t Hoff equation, equation (6). For example, 

for exothermic processes, processes that are accompanied by 

evolution of energy as heat, equation (6) predicts a decrease 

in total entropy change ∆����  as the temperature is increased. 

Hence the observed favoring of reactants over products as the 

temperature gets increased in an exothermic reaction. On the 

other hand for endothermic processes, processes that are 

accompanied by absorption of energy as heat, equation (6) 

predicts an increase in total entropy change ∆���� as the 

temperature gets increased. Hence the observed favoring of 

products over reactants as the temperature is increased in an 

endothermic process. This must be so because ∆rH
°
< 0 for an 

exothermic system while ∆rH
°
> 0 for an endothermic system. 

One can carry out a similar kind of analysis as the 

temperature is lowered for both endothermic as well as 

exothermic processes. One can also look at the predictions of 

equation (6) in another way by taking equation (5) also into 

consideration. Since as per equation (6) an increase of 

temperature leads to a decrease in total entropy change for an 

exothermic process, the equilibrium constant decreases with 

increase of temperature as per equation (5). Similarly, since 

for an endothermic process an increase of temperature, 

according to equation (6), leads to an increase in total 

entropy change, the equilibrium constant for an endothermic 

process increases with increase of temperature as per 

equation (5). In fact one can quantitatively determine, using 

equation (5), by how much the value of Keq changes. One can 

also explain the observed drastic shift in the value of 

equilibrium constant as the temperature of a system is varied 

by a few hundred degrees (as is usually the case in real world 

processes like the Haber-Bosch process [12] used in the 

manufacture of ammonia) on the basis of the fact that the 

relationship involved between Keq and ∆Stot in equation (5) is 

an exponential one and therefore the observed behavior has 

something to do with the nature of the exponential function. 

This is one of the novel predictions of equation (5). 

4. Conclusion 

A more fundamental thermodynamic explanation of the 

behavior of equilibrium constant towards temperature for 

both exothermic and endothermic processes (reactions) relies 

on the relative importance of the magnitudes of the entropy 

changes of the reaction system and its surroundings; in other 

words on the total entropy change. Hence it is desirable to 
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have a quantitative expression underlying this explanation. It 

is possible to extend van’t Hoff’s equation to arrive at a 

mathematical expression that can serve and provide a 

quantitative theoretical basis to the stated explanation just 

like van’t Hoff’s original equation provides a theoretical 

basis to the explanation of dependence of equilibrium 

constant on temperature through the use of Gibbs energy 

change. 
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