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Abstract: Robot manipulators have become increasingly important in the field of automation. So modelling and control of 

robots in automation will be very important. This paper presents a study of robust control approach employing fuzzy logic 

control technique for two degree of freedom (2-DOF) manipulator robot. A learning control system is designed so that its 

“learning mechanism” has the ability to improve the performance of the closed-loop system by generating command inputs to 

the plant and utilizing feedback information from the plant. It is well known that robotic manipulators are highly nonlinear 

coupling dynamic systems. A fuzzy logic rule base is designed, using the knowledge obtained from the operator. Simulation is 

performed to demonstrate the effectiveness of control strategy. Furthermore, the parameters of the controllers were optimized 

using MATLAB and simulations' result reveals that control scheme is working satisfactorily. 
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1. Introduction 

In recent years, control engineers have become 

increasingly interested in the robot tracking problem. As a 

result many controllers have been developed which 

compensate for uncertainty in the nonlinear second-order 

dynamics commonly used to represent rigid-link robots. Most 

of the more rigorously developed nonlinear controllers for 

rigid-link robots fall into two categories, indirect adaptive 

control and robust nonlinear control. The interested reader is 

referred to Abdallah et al., [1] and K. A. Khalil et al., [2] for 

review papers in these two areas. Dynamics of robot 

manipulators are highly nonlinear and may contain uncertain 

elements such as friction. Many efforts have been made in 

developing control schemes to achieve the precise tracking 

control of robot manipulators [3-5]. 

A robust fuzzy control design has been developed for a 

class of nonlinear systems, and the fuzzy control is robustly 

and globally stabilising. The design assumes a general 

structure and needs no supervisory control. In this approach, 

a robust sub-control is designed first and fuzzified for each 

rule to guarantee closed-loop stability in each fuzzy set. 

Individual robust controls are then blended into the overall 

fuzzy controller, [6-7]. 

This paper is organized as follows: The next section 

describes the system dynamics to be controlled. In the third 

section, robust control system is briefly introduced. The third 

section describes the control strategy utilizing the proposed 

approach. Simulation results are presented in the fourth 

section. The concluding remarks on the system performance 

are given in the last section. 

2. Manipulator Dynamics 

The mechanism consists of two intersecting axes at the 

shoulder and elbow links with revolute joints. The forward 

kinematics for open chain manipulator is computed by 

calculating the individual motions for each joint.  

There are many methods for generating the dynamics of a 

mechanical system. All methods generate equivalent sets of 

equations, but different forms of the equations may be better 

suited for computation or analysis. A Lagrangian analysis for 

our derivation will be used, which relies on the energy 

properties of mechanical systems to compute the equation of 

motion. The resulting equations can be computed in closed 

form, allowing detailed analysis of the properties of the 

system. For each link the frame Li at the centre of mass and 

aligned with principle inertia axes of the link.  
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Using the Lagrangian formulation, the equations of motion 

of a two degrees-of-freedom rigid manipulator may be 

expressed by: 
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where Mi is the generalized inertia matrix for the i
th

 link. 

Now the total kinetic energy can be written as 
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The matrix M (θ) ∈ R
nxn

 is the manipulator inertia matrix. 

In terms of link Jacobians, Ji, the manipulator inertia matrix 

is defined as  
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With this choice of link frames, the link inertia matrices 

have the general form  
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where mi is the mass of the object and Ixi, Iyi, and Izi are the 

moments of inertia about the x-, y-, and z- axes of the i
th

 link 

frame. 

Computation the body Jacobians for each link frame. 
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The inertia matrix for the system is given by 
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To complete the derivation of the Lagrangian, the potential 

energy of the manipulator must be calculated. Let hi (θ) be 

the height of the centre of mass of the i
th

 link (height is the 

component of the position of the centre mass opposite the 

direction of gravity). The potential energy for the i
th

 link is 
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where mi is the mass of the i
th

 link and g is the gravitational 

constant. 

Combining this with the kinetic energy, then 
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Substitute in Lagrange’s equations, 
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where τi represent the actuator torque. Then it can arrive to  
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where τ is the vector of actuator torques and N (θ, θ) includes 

gravity terms and others forces which act at the joints. This is 

a second-order vector differential equation for the motion of 

the manipulator as a function of the applied joint torques. 

The matrices M and C, which summarize the inertial 

properties of the manipulator, have some important 

properties. 

The Coriolis and centrifugal forces are computed directly 

from the inertia matrix via the formula 
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A very messy calculation shows that the nonzero values of 

гijk are given  
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Finally, the effect of gravitational forces on the 

manipulator are written as 
.
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R is the potential energy of the manipulator.  
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where hi is the height of the centre of mass for the i
th

 link. 

These can be found using the forward kinematics map 
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Substituting these expressions into the potential energy 

and taking the derivative gives 
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3. Fuzzy Model Reference Learning 

Control (FMRLC) Design 

The fuzzy controller by itself has little knowledge about 

how to control the manipulator. As the algorithm executes, 

the output membership functions are rearranged by the 

learning mechanism, filling up the rule base. For instance, 

once a slew is commanded, the learning mechanism 

described below will move the centres of the output 

membership functions of the activated rules away from zero 

and begin to synthesize the fuzzy controller. In this case, it 

developed an FMRLC for automatically synthesizing and 

tuning a fuzzy controller for the system. The FMRLC 

structure shown in Figure 1 was used, which tunes the 

coupled direct fuzzy controller. Next, Each component of the 

FMRLC for the two-link system will be described, [9-10]. 

The universe of discourse for the position error input e1 to 

the shoulder link controller was chosen to be [-100, +100] 

degrees, and the universe of discourse for the endpoint 

acceleration a1 is [-10, +10] g. For the elbow link controller, 

the universe of discourse for the position error e2 is [-80, +80] 

degrees, and the universe of discourse for the endpoint 

acceleration a2 is [-8, +8] g. The output universe of discourse 

for v1 and v2 by getting gv1 = 0.125 and gv2 = 1.0 was chosen. 

The desired performance is achieved if the learning 

mechanism forces ye1 (kT) ≅ 0, ye2 (kT) ≅ 0, for all k≥0. It is 

important to make a proper choice for a reference model so 

that the desired response does not dictate unreasonable 

performance requirements for the plant to be controlled. 

through simulation, it was determined that 3

3s +
 is a good 

choice for the reference models for both the shoulder and the 

elbow links. 

 

Figure 1. FLMRC for the two link robot. 
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3.1. The Fuzzy Inverse Models 

There are several steps involved in specifying the fuzzy 

inverse models and these are outlined next. Choice of Inputs: 

For our system there are two inverse models, each with three 

inputs yej (t), ycj (t), and aj (t) (j=1 corresponding to shoulder 

link and j=2 corresponding to elbow link). Several issues 

dictated the choice of these inputs: (1) it is easy to specify 

reference models for the shoulder and elbow link position 

trajectories (as discussed above) and hence the position error 

signal is reality available; (2) it is found via simulation that 

the rates of change of position errors, ycj (t), j=1, 2, and 

acceleration signals aj (t), j=1, 2, were very useful in 

deciding how to adjust the fuzzy controller; and (3) to 

minimize the number of inputs to the fuzzy inverse models to 

ensure that it could implement the FMLRC with a short 

enough sampling interval (in our case, 15 milliseconds). The 

direct use of the acceleration signals aj (t), j=1, 2, for the 

inverse models actually corresponds to choosing reference 

models for the acceleration signals that say “no matter what 

slew is commanded, the desired accelerations of the links 

should be zero” (why?). While it is clear that the links cannot 

move without accelerating, with this choice the FMLC will 

attempt to accelerate the links as little as possible to achieve 

the command slews, thereby minimizing the amount of 

energy injected into the modes of vibration. Next, rule base 

design for the fuzzy inverse models were discussed. 

3.2. Choice of Rule Base 

For the rule bases of the fuzzy inverse models, rules 

similar to those described in [10] was used, for both the 

shoulder and elbow links except that the cubical block of 

zeros is eliminated by making the pattern of consequents 

uniform. These rules have premises that quantify the position 

error, the rate of change of the position error, and the amount 

of acceleration in the link. The consequents of the rules 

represent the amount of change that should be made to the 

direct fuzzy controller by the knowledgebase modifier. For 

example, fuzzy inverse model rules capture knowledge such 

as (1) if the position error is large and the acceleration is 

moderate, but the link is moving in the correct direction to 

reduce this error, then a smaller change (or no change) is 

made to the direct fuzzy controller than if the link were 

moving to increase the position error; and (2) if the position 

error is small but there is a large change in position error and 

a large acceleration, then the fuzzy controller must be 

adjusted to avoid overshoot. Similar interpretations can be 

made for the remaining portions of the rule bases used for 

both the shoulder and elbow link fuzzy inverse models. 

3.3. Choice of Membership Functions 

The membership functions for both the shoulder and elbow 

link fuzzy inverse models are similar to those used for the 

elbow link controller expect that the membership functions 

on the output universe of discourse are uniformly distributed 

and there are different widths for the universes of discourse, 

as it was explained next (these widths define the gains gyej, 

gycj, gaj, and gpj for j=1, 2). The universe of discourse for yei 

to be [-80, +80] degrees for the shoulder link was chosen and 

[-50, +50] for the elbow link. A larger universe of discourse 

for the shoulder link inverse model was chosen than for the 

elbow link inverse model than for the elbow link inverse 

model because it need to keep the change of speed of the 

shoulder link and [-150,+150] for the elbow link. A larger 

universe of discourse for the shoulder link inverse model 

than for the elbow link inverse model was chosen because it 

need to keep the change of speed of the shoulder link gradual 

so as not to induce oscillations in the elbow link (the elbow 

link is mounted on the shoulder link and is affected by the 

oscillations in the shoulder link). The universe of discourse 

for yc1 is chosen to be [-400, +400] degrees/second for the 

shoulder link and [-150 +150] degrees/second for yc2 of the 

elbow link. These universes of discourse were picked after 

experimental determination of the angular velocities of the 

links. The output universe of discourse for the fuzzy inverse 

model outputs (p1 and p2) is chosen to be relatively small to 

keep the size of the changes to the fuzzy controller small, 

which helps ensure smooth movements of the robot links. In 

particular, The output universe of discourse to be [-0.125 

+0.125] for the shoulder link inverse model was chosen, and 

[-0.05 +0.05] for the elbow link inverse model. Choosing the 

output universe of discourse for the inverse models to be [-1, 

+1] causes the learning mechanism to continually make the 

changes in the rule base of the controller so that the actual 

output is exactly equal to the reference model output, making 

the actual plant follow the reference model closely. This will 

cause significant amounts of speed variations in the motors 

as they try to track the reference models exactly resulting in 

chattering along a reference model path, The choice of a 

smaller width for the universe of discourse keeps the actual 

output below the output of the reference model until it 

reaches the set point. This increases the settling time slightly 

but the response is much less oscillatory. This completes the 

definition of two fuzzy inverse models in Figure 1. 

3.4. The Knowledge Base Modifier 

Given the information (from the inverse models) about the 

necessary changes in the input needed to make ye1 ≅ 0 and 

ye2 ≅ 0, the knowledge base modifier changes the knowledge 

base of the fuzzy controller so that the previously applied 

control action will be modified by the amount specified by 

the inverse model outputs pi, i=1, 2. To modify the 

knowledge base, the knowledge base modifier shifts the 

centres of the output membership functions (initialized at 

zero) of the rules that were “on” during the previous control 

action by the amount p1 (t) for the shoulder controller and p2 

(t) for the elbow controller. 

Note that to achieve good performance, it was found via 

simulation that certain enhancements to the FMRLC 

knowledge base modification procedure were needed.  
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4. Simulation of 2-DOF Model with 

Direct FMRLC System 

The total number of rules used by the FMRLC is 121 for 

the shoulder controller, plus 343 for the base axis controller, 

plus 343 for the shoulder fuzzy inverse model, plus 343 for 

the base axis fuzzy inverse model, for a total of 1150 rules. 

Even with this number of rules, The sampling time of T=1 

milliseconds was used for the direct fuzzy controller. 

Simulation results obtained from the use of the FMRLC 

are shown in Figures 2- (a & b) and 3- (a & b) for a slew of 1 

for each link. The rise time for the response is about 0.3 sec. 

and 0.25 sec, the settling time is approximately 0.2 sec. and 

0.14, the delay time is 0.005 sec. and 0.1 with zero steady 

state errors for the two axes. 

Different payloads change the model frequencies in the 

link/payload combination (e.g., heavier loads tend to reduce 

the frequencies of the modes of oscillation) and the shapes of 

the error and acceleration signals e1 (t), e2 (t), and a1 (t) (e.g., 

behaviour loads tend to slow the plant responses). Hence, 

Changing the payload simply results in the FMRLC 

developing, remembering, and applying different responses 

depending on the type of the payload variation that occurred. 

Essentially, the FMRLC uses data from the closed-loop 

system that is generated during the simulation operation of 

the plant. This enables it to achieve better performance than 

the direct fuzzy controller described above. The cross 

ponding controller signals is cleared in lower part of each 

figure.  

Figure 4-a shows the time responses of step disturbance 

reference input, the recovering had happened after 0.2 sec. 

for the base axis with zero steady state error. In Figure 5-a 

after 0.3 sec. for the shoulder axis with zero steady state 

error. The cross ponding controller signal is shown in Figures 

4-b and 5-b.  

The difference which had happened between the reference 

input and the axes response because of the way the learning 

mechanism modified the rule base of the controller to keep 

the response below that of the reference model. 

 

Figure 2. System step response based on fuzzy controller (Base Axis). 

 

Figure 3. System step response based on fuzzy controller (Shoulder Axis). 
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Figure 4. System motion curve response based on fuzzy controller (Shoulder Axis). 

 

Figure 5. System motion curve response based on fuzzy controller (Shoulder Axis). 

5. Conclusion 

In this paper, a design approach that can be used to design 

robot tracking controller was developed which compensate 

for nonlinear dynamics in robot model. One of the most 

important challenges in the field of robotics is robot 

manipulators control with acceptable performance, because 

these systems are multi-input multi-output (MIMO), 

nonlinear and uncertainty. The control problem of a nonlinear 

system such as the two DOF system is studied in this paper. 

A fuzzy controller has been implemented.  

Although fuzzy logic control has a model-free feature, it 

still needs time-consuming work for the rules bank and fuzzy 

parameters adjustment. This approach has a learning ability 

for responding to the time-varying characteristic of the 

system. Its control rules bank can be established and 

modified continuously by online learning with zero initial 

fuzzy rules. FMRLC designed in this case is found to be 

adoptive and robust with strong learning ability. 
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