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Abstract: This paper presents a new method for controlling tri rotor-type unmanned aerial vehicles (UAV) adapted from the 

SE (3) nonlinear geometric method for quadrotor-type UAV. Like its predecessor, the control strategy for single tri rotors is 

realized in a hierarchical architecture, containing both attitude controller and position controller. As a basis, the mathematical 

dynamics of the tri rotor is given in form of rotation matrix that ensures the algorithm is independent from any specific 

representation, such as Euler angle or quaternion. Assumption about primary thrust component is made to decouple the equations 

of the controllers to find an appropriate reference target for the attitude controller. An integral action is proposed to alleviate the 

steady-state error that arises from incorrect modelling due to simplification. This is justified by a Lyapunov function that also 

yields additional conditions for parameter gains setup. Output of the controller includes desired torque components, as well as 

total thrust magnitude. It is from this point that divergence from the original method for quadrotors becomes prominent. A 

numerical solver is introduced to yield the desired motors’ angular speed and tail servo angle. Some numerical examples 

implemented on MATLAB/Simulink illustrate that the controller is able to correct steady-state error and gives quick response, 

just like its quadrotor-type counterpart. 

Keywords: Tri Rotor, Geometric, Nonlinear, Control, SE (3), SO (3). 

 

1. Introduction 

Unmanned aerial vehicles (UAVs) are becoming more and 

more popular because of their benefits. For instance, UAVs 

have increased their existence through various activities such 

as photography, 3D mapping [1], remote sensing [2], 

management and inspection of giant assets such as a power 

line or a complex construction. Moreover, UAVs are believed 

to be helpful in disaster responses, providing preliminary 

supplies for those in emergency situations before further help 

arrives [3]. Developments of compact sensors, batteries, and 

microprocessors have been the main forces behind the 

growing momentum of UAVs in recent years that crystallized 

in the invention of many UAV designs. Among those, rotary 

wing UAVs account for a significant portion of interest by 

virtue of hovering and Vertical Take-off and Landing (VTOL) 

capabilities, which enables the UAV to be used in 

complicated navigation environment, such as inside a 

building or in the mountains.  

Tri-rotor is a rotary-wing type UAV which has three 

propellers to generate the lift, as well as to control the 

attitude and position. This design is further divided into 

various classes such as single tri-rotor [4] and coaxial 

tri-rotor. The single tri-rotor has a servo motor on one of the 

arms that connect the rotors with the hub to tilt the rotor to 

some angles, providing the yaw stability (Figure 1). 

Furthermore, this design allows the tri-rotor to perform the 

tight-turn and to keep the UAV more stable. 

An apparent issue of single tri rotor design is its nonlinear 

dynamics. The interest in tri-rotor design has just picked up 

recently, thus comparing to quadrotors, literature about 

tri-rotor control is not as rich. However, several control 

algorithms, both linear and nonlinear, are available. A control 

strategy in [6] proposed a scheme for the mixing signals and 

design PID controllers. Optimal LQR control for the 

regulation of individual roll, pitch, and yaw channel is 

attempted in [7]. A fuzzy logic controller can also be used in 
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a hybrid scheme to augment the tri-rotor’s dynamic response 

[8, 9]. The study in [7] also proposed a strategy for 

back-stepping control of the attitude angles while a full 

position tracking control can be found in [10]. A research in 

[11] presented a feedback linearization, in junction with a 

H
∞  loop shaping controller for controlling the tri-rotor. 

 

Figure 1. Single tri rotor model. 

Geometric control method on SE (3) [12] exploits the Lie 

group structure of the Special Orthogonal Group SO (3) to 

create an algorithm that exhibits almost global stability for 

quadrotor UAVs. The algorithm is further developed to be 

adaptable to the changes in mass and moment of inertia and 

proven to be robust and fast, capable of performing 

aggressive maneuverings [13]. Foundation of the method is 

coordinate-free i.e. does not depend on a particular 

representation of attitude such as 0 Euler angles or 

quaternions. The controller comprises of two separate 

controllers: attitude controller and position controller, 

realized through the Lyapunov direct method. Since the rotor 

plane of a quadrotor does not change, this design has 

provided an intrinsic mechanism to connect two separate 

controllers in an easy way. For single tri-rotor, the 

nonlinearity in the dynamics model implies that the coupling 

between the thrust vector and aircraft attitude cannot be 

broken, unless an assumption about the large thrust 

magnitude in the vertical orientation is made. Inaccurate 

modelling resulted in the appearance of steady-state error, 

which can be circumvented by introducing an integral action. 

This paper presents a new method to adapt the SE (3) 

nonlinear geometric controller for quadrotors to tri rotors. 

The new algorithm promises all the same advantages as the 

original algorithm, which are fast responsiveness and 

robustness to disturbances, but at the cost of heightened 

computational cost – due to the implementation of a 

numerical solver. 

The rest of this paper is organized as follows. In Section 2, 

a dynamic model for single tri-rotor is presented. In Section 3, 

a quick recall of some important results from [12, [14] and a 

description for a new position controller with an integrator to 

improve robustness are carried out. In Section 4, results of 

the numerical simulation using MATLAB/Simulink are 

presented along with discussions. Finally, some concluding 

remarks are provided in Section 5.  

2. Dynamics Modelling 

The dynamics model of the tri rotor is based on a set of 

differential equations that governs a typical 6 

degree-of-freedom in three-dimensional space. Let  

( , , )Tx y zξ =  

be the position of aircraft’s centre of gravity (CG) with respect 

to a Cartesian inertial frame, and 

v ξ= ɺ                   (1) 

be the velocity of the aircraft in the same frame. Newton’s 

second law gives: 

e
mv F=ɺ                    (2) 

where  denotes the net force vector acting on the aircraft 

written with respect to the inertial frame. 

 

Figure 2. Aircraft’s position and attitude are represented by the centre of 

gravity’s position in the inertial frame and a rotation transformation R that 

transforms the body frame to inertial frame. 

The aircraft’s attitude can be depicted by the rotation 

transformation that takes an arbitrary 

vector from the body frame and converts it into a vector in the 

inertial frame. Its dynamics is given by: 

( ( ))R R sk= Ωɺ                  (3) 

where  is the angular rates in the body frame and sk ( ) 

denotes the skew-symmetric transformation mapping, defined 

as: 

0

0

0

a c b

sk b c a

c b a

−    
    = −    
    −    

             (4) 

Finally, the rotational dynamics of the aircraft can be 

eF

(3) (3)R SO GL∈ ⊂

Ω
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expressed as: 

JJ τΩ = −Ω× Ω +ɺ               (5) 

where J is the moment of inertial matrix of the aircraft, is 

the torque applying on the aircraft around its centre of gravity. 

Thus, equations (1), (2), (3) and (5) form a complete set of 

tri rotor’s dynamics: 

( )

e

v

mv F

R Rsk

J J

ξ

τ

=
=

= Ω

Ω = −Ω × Ω +

ɺ

ɺ

ɺ

ɺ

          (6) 

The force  is given as: 

3e ab
F mge RF= +            (7) 

where e3 = [0 0 1]
T
 and according to [6]: 

1

2 3 1

0

sin

cos

ab
F f

f f f

α
α

 
 =
 
 − − − 

         (8) 

is the thrust vector written with respect to the body frame and:  

3 2 3

2 2 3 1 1

1 1 1 2 3

(

( sin

sin

)

cos

)l

l l

l

f f

f f f

f

τ α
α τ α τ τ

− 
 = − +
 
 − + 

−
+

−
       (9) 

is the torque around the aircraft’s CG with respect to body 

frame [6]. The length  are described in Figure 1. 

By using simplified model, the thrust created by each rotor 

is proportional to its angular speed and so is the torque: 

2 [1,2,3],
i T i

f c iω ∈=  

2 [1, 2,3],
i Q i

c iτ ω ∈=  

The whole system has 4 inputs to control: individual rotor 

angular speed  and servo tail angle . The response 

of each variable must be quick enough, otherwise the aircraft 

would fail to track the reference signal. 

3. The SE (3) Nonlinear Controller 

Adapting from the hierarchy described in [12], the 

controller is made up of attitude controller and position 

controller respectively. Additionally, there is a Command 

Signal Resolver (CSR) block, which is a numerical solver to 

solve for desired rotor speed and servo tail angle. Figure 3 

depicts the holistic view of the entire control system. 

 

Figure 3. Hierarchy of the control system. 

3.1. Attitude Tracking Controller 

The attitude controller takes the desired attitude, expressed 

as the rotation matrix , along with desired angular rates 

 expressed in body frame as reference signal. Feedback 

signal includes the moment of inertia matrix J, current angular 

rates obtained from the gyroscopes. From [12] and [14], the 

control law is as follows: 

)

( )

( (

)

r R

T T

d d d d

esk J J k e

sk

k

R R RR

τ Ω Ω= Ω Ω + −−

Ω +Ω Ω− ɺ
         (10) 

where is the error between current and desired aircraft 

attitude: 

( )11

2

T T

R d de sk R R R R
− −=          (11) 

and  describes the instant time evolution of attitude error: 

T

d d
R ReΩ Ω −= Ω             (12) 

Also, from [14], the initial condition for tracking is: 

21
|| (0) || (0)

2
2

r r
ke kΩ ≤ Ψ−  

where 

τ

eF

1 2 3, ,l l l

1 2 3, ,f f f α

dR

dΩ

Re

eΩ
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( )
1

2

T

d
trace RI RΨ = −  

and the sufficient condition for the gain to satisfy is: 

1
1

2

1

2
r

k

k

Ω
 − − 
 
 −
  

 

is positive definite. 

It can be proven that if  corresponds to attitude error 

angle less than 180
o
, the origin is exponentially stable [12, 14]. 

This property can be leveraged to perform aggressive 

manoeuvres from some pre-programmed motions. 

3.2. Position Tracking Controller 

Differences between single tri rotors and quadrotors make 

the problem subtler from here. To be able to track some 

trajectories, the position controller has to generate a desired 

attitude so that the attitude controller can track. In fact, it is 

only the thrust vector (the normalised vector pointing in the 

direction of total force generated by all rotors) that is of 

concern for position tracking. Construction of the entire 

desired attitude requires an additional vector, which can be 

deduced from the input yaw angle. 

Due to the under-actuated nature of the system, we cannot 

freely decouple the attitude tracking and position tracking. This 

problem is further complicated by the coupling between thrust 

direction and aircraft attitude through inputs  and . 

In other words, we cannot obtain an immediate desired attitude 

just by having a thrust vector and a yaw angle as in the 

quadrotor’s case. Any attempt would require an iterative 

process that solves all the inputs and the aircraft desired attitude 

at the same time. This would bring heightened computational 

cost to the processor on board, as well as additional difficulties 

in analysis. However, since most of the thrust is given out in the 

direction perpendicular to the rotor plane, we can neglect the 

other components and use the same approach as for a quadrotor. 

1

2 3 1 2 3 1

0 0

sin 0

cos cos

ab
F f

f f f f f f

α
α α

   
   =
   
   − − − − − −   

≈    (13) 

This is one source of inaccuracy in modelling. External 

disturbances may cause additional inaccuracy, resulting in 

enlarged steady-state error. To improve robustness, we turn to 

the implementation of an integrator. Let 

x d
e x x= −                       (14) 

as the translational position error between the current and 

desired position. It can be proven that the following thrust 

vector is required for asymptotic position tracking:  

3

3|| ||

x x v v i d

x x v v i d

mge mv
TV

m

mk e mk e mk

mk e mk e mkge mv

χ
χ

+ += +
−+ + +
− ɺ

ɺ
    (15) 

and thrust magnitude is: 

3 3
)( Re

x x v v i d
f mk e mk emge mvmk χ= + + + − ⋅ɺ     (16) 

where  is integration of : 

xdteχ = ∫  

The necessary conditions for asymptotic tracking are: 

3
|| ||d maxev g B− <ɺ                (17) 

|| || || ||maxχ χ<                 (18) 

|| ||| ||| x x maxee <                 (19) 

(0) |
1

| (|
2

0| )
r r

e k kηΩ < Ψ−            (20) 

where with the maximum eigen-angle, 

limited to less than . The controller parameters 

 must also satisfy the following identity: 

2

2
2

1

4 ||
))

min

||
m (

( ( ))
in ( Teig W

W

eig W
>         (21) 

where 

1

1
1

2

1

2
r

k

k

W
Ω

 − 
=  
 −
  

−
              (22) 

1 2

2

2 1

1
( )

)

2

1
(

2

i x x

x v

mk c k c mk

W

c mk mk c

 − + 
=  
 + −
  

         (23) 

and 

1 1

10

0 ||1

0

||

||||1

i max max

T

max v i max

c k c B
W

mB c k mk

χ
χα

+ 
=  + +−  

    (24) 

It is required that matrices  are positive definite. 

Additional conditions also require the following matrix 

positive definite: 

1

1

2

1 1

2 2

1

2

i i

i

c k mk

M

mk c

 
 

=  
 
  

           (25) 

and 

1 2 1

2

1

1

2

1 1

2 2

x vmk c k c c

M

c m

 + + 
=  
 
  

        (26) 

,rk kΩ

2Ψ <

1 2 3, ,f f f α

χ xe

1 cosη α= − α
/ 2π

,,, ,r x v ik kk k kΩ

1 2, , TW W W
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The existence of any ( ) that satisfies the above 

conditions will guarantee the asymptotic stability of the origin 

with respect to the conditions given in (17-20). The Lyapunov 

candidate function for the position controller to yield the 

above results is: 

( )2 2

4 1 2 1

0 0

2

1

1
|| ||

2(1 2
|| ||

) )(1

1

2

v x v x x v

i i x

m
V e mk c c e c e

c k m

k e

ek

α α

χ χ

+ + +

+ +

⋅+
−

⋅

−
=

 

The last two terms (and term c2||ex||
2
) of the Lyapunov 

function V4 is to accommodate the integrator. Formal proof of 

this statement is given in [15] while some of the conditions for 

signal boundedness can be found in [14]. 

The introduction of an integrator complicates the analysis 

process; an extra care has to be considered so that the maximum 

output of the integrator is well regulated with respect to 

condition (17). This can be achieved via introduction of a 

saturator at the output of the integrator. Moreover, to prevent 

excess overshooting due to integrator wind-up, we adopt a very 

simple mechanism that stops the accumulation process 

whenever there is at least one rotor is saturated at maximum 

output. 

To generate the desired attitude, we have to take into 

account the input yaw angle to generate one additional vector, 

denoted as PDV, which is constructed by multiplying the 

rotation matrix expressed by Euler angles as 

with [1, 0, 0]
T
. This vector is projected 

onto the plane perpendicular to thrust vector to yield a 

concrete vector called DDV as follows: 

( )( ( ) )DDV sk T sk T PDV= −           (27) 

The remaining vector of the orthonormal axis system is 

taken as the cross product of the thrust vector and DDV: 

( )V sk T DDV=                (28) 

Finally, the desired attitude is: 

[ , , ]
d

T DDVR V=               (29) 

i.e. the vectors are stacked horizontally. 

3.3. Numerical Solver 

For the quadrotor’s case, the input command signal for the 

angular speed of the rotors can be found directly by solving a 

system of linear equations which can be very efficiently 

achieved. For the single tri-rotors, we need to have an 

additional solver to obtain these data numerically (Figure 4). 

 

Figure 4. Inputs and outputs of the numerical solver. 

The Newton-Raphson method is adopted to solve the 

nonlinear system of equations: 

1 3 2 3

2 2 2 3 1 1

3 1 1 1 2 3

2 2 2

1 2 3 1

)

( )

|| ) )

(

|| ( (ab

f

f f l f cos

f sin cos

sin f f cos

l f

l

l

F f f

τ
τ α
τ α τ α τ τ

α α

−
+ +

− +

= −
= −
=

+ +

−

= +

      (30) 

If we use  as an input, the relationships are: 

2 [1,2,3],
i T i

f c iω ∈= ; 2 [1, 2,3],
i Q i

c iτ ω ∈=  

It is possible to rewrite the third equation of (30) as: 

3 1 1 1 2 3s (in )T

Q

c
f cos ff f

c
lτ α α− + −=        (31) 

The Newton-Raphson method involves finding the 

Jacobian of the system as follows: 

21 3

i i i ig g g g

f f f fα

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
 
 
 

           (32) 

in particular: 

3 3

1 2 2 1 1

1 1 1

1 2 3 2 3 1 2 3 1 2 3 1

sin

s

0 0

cos sin

2( ( 2( ) 2( ) 2

in cos

cos ) () )

T T T T

Q Q Q Q

f

l

l l

l cos l l l

J c c c c
l f

c c c c

f f f f ff f cos f cos f f sinf f

α α

α α α α

α α α α

− 
 − − − 
  =
 − − +  

+ +
  
 + − + + + +

                   (33) 

Starting from some initial value: 

1

2

3

0

f

f

f

α

 
 
 
 
 
 

 

we apply the following iterative formula: 

1 1

2 2 1

3 3

1n n

f f

f f
J F

f f

α α

−

+

   
   
   = −
   
   
   

          (34) 

where 

1 2,c c

0, 0, ( )tφ θ ψ ψ= = =

if
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3 2 3

2 2 3 1 1

1 1 1 2 3

2 2

1 2 3 1

)

( )

) )

(

( (

f

f f l f co

l f

l
F

s

f sin cos

sin ff os

l

f f c

α
α τ α τ τ
α α

− 
 − =
 −


−
+ +

− +

 ++ +



       (35) 

The Newton-Raphson method has a fundamental weak 

point: it is not guaranteed to converge if the initial solution is 

not close enough to the solution. However, during simulations 

we found that an initial condition set at trimmed flight 

condition always yield a desirable performance with 

convergence achieved in less than 3 iterations.  

4. Numerical Simulations 

To demonstrate the effectiveness of the proposed approach, 

two simulations are conducted. The first simulation is the 

hovering test to examine the integrator in action. The second 

one is the trajectory tracking, whose sample trajectory is given 

in [14].  

MATLAB/Simulink is employed to test the numerical 

examples. The parameters of a single tri-rotor UAV are given 

in Table 1.  

The controller gains are setup as in Table 2. 

For each of the following scenarios, we will compare the 

numerical results with and without the integration action 

(equivalent to setting ki to 0 or 1.2). 

4.1. Hovering Flight 

In the hovering test, the UAV is placed at the origin, with 

zero initial translational and angular velocities and 

acceleration. In the first case, we simulate the drone response 

with respect to zero integration (which corresponds to ki = 0). 

The result is given in Figure 5.  

Table 1. Single Tri rotor physical parameters. 

Parameter Symbol Value Unit 

Mass m 1.12 kg 

Gravitational acceleration g 9.81 m/s2 

Thrust coefficient cT 1.4865e-7 kg.m 

Torque coefficient cQ 2.9250e-9 kg.m2 

Moment of inertia J 

0.0095 0 0

0 0.0095 0

0 0 0.0186

 
 
 
  

 
kg.m2 

Arm’s length l1 l1 0.35 m 

Arm’s length l2 l2 0.35 m 

Arm’s length l3 l3 0.35 m 

Table 2. Single Tri rotor controller parameters. 

Parameter Symbol Value 

Sampling time Ts 1/60s 

Frequency of controller’s main loop fs 60Hz 

Frequency of numerical solver fn 720Hz, equivalent to 12 iterations per input 

Position proportional gain kx 5.6 

Position derivative gain kv 2.8 

Position integration gain ki 0 or 1.2, depends on the case 

Attitude proportional gain kr 12.8 

Attitude rate gain kΩ  7.2 

 

Figure 5. Response of the aircraft in hover condition with no integration. 
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Figure 5 showed that the equilibrium state of the drone does 

not coincide with zero roll, pitch and yaw angles. To prevent 

the tri-rotor from yawing due to the lack of counter rotating 

torque, the tail must be deflected to a small angle of 0.056 rad. 

However, this action leads to the existence of a horizontal 

force which tends to drift and roll the drone away. Therefore, 

the drone has to change its attitude to maintain the equilibrium 

between all forces and torques.  

Although the simulation has yet to introduce any external 

disturbance, the steady state errors still appear across y and z 

components of the drone’s position. This contributes to the 

inaccurate modelling due to the assumption that the thrust 

vector stays in the z axis, perpendicular to the rotor’s plane in 

the body frame. Additional disturbance may enlarge this 

steady state errors, thus an integration is desired to increase 

the robustness of the control algorithm. 

Setting ki = 1.2 activates the integrator. The integrator 

accumulates the steady state error and provides a mechanism 

to reduce the error with time (Figure 6).  

 

Figure 6. Response of the aircraft in hover condition with integration. 

The integrator now drives the steady state error exponentially 

to zero. Although the response of the attitude angles seems 

similar to no integration case, there is a slowly decaying trend 

that is not quite visible in the graphs as shown in Figure 6. 

4.2. Trajectory Tracking Flight 

The sample trajectory to track is adopted from [14]. The 

trajectory is linearly interpolated from a table of desired 

position of the drone by time (Figure 7). Every single segment 

in the trajectory is travelled in 5 seconds. 

Since the data is linearly interpolated, the reference signal 

has infinite acceleration command at 5n seconds, with

. This acceleration is saturated across the 

implemented model. With no integration i.e. setting ki to zero, 

the controller’s response is obtained and plotted in Figure 8. 

Figure 8 showed that the steady state error can be found in 

the y and z component, just like the hovering case. Similar the 

quadrotor’s case, the response of the tri-rotor is quick with 

minimal delay or transient time, which is a strong point of this 

controller family. 

Figure 9 reveals a subtle insight. The ||eR|| term corresponds 

to the performance of the attitude controller. The attitude 

controller is capable of driving the attitude error to zero, in 

contrast with position controller. This reiterates the point that 

the steady-state error stem from the trajectory tracking process 

is solely due to the approximation of thrust vector direction in 

the position controller and does not affect the attitude 

controller. A future work can be developed using the fact that 

the introduction of an integrator in the attitude tracking may 

also increase the robustness against disturbances, especially 

the torque disturbances.  

 

Figure 7. Sample trajectory to track. 

(0,1,2,3,4,5,6)n ∈
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(a) Time response 

 

(b) Error response 

Figure 8. Aircraft’s position response (no integrator) with time. Dashed lines 

indicate reference trajectory to track. 

 

Figure 9. Response of attitude error in attitude controller. 

With the integrator ki = 1.2, the aircraft’s position response is 

given in Figure 10. The graph showed that the steady state error 

returns to near zero after 7 seconds. The Euler angles and tail 

angle are shown in Figure 11. The rotor angular speeds are 

illustrated in Figure 12. The large magnitude kick is due to the 

large acceleration of the linearly interpolated sample trajectory. A 

filter can be implemented to alleviate this problem. Nevertheless, 

the response illustrates the fact that this nonlinear controller 

works with highly derivative signals, a source of which the 

sensor noise can enter and destabilise the problem. Until a full 

implementation on a physical system is completed, it is hard to 

estimate and/or evaluate the effects of noises, and disturbances on 

the system, except using several predefined mathematical models. 

This paves the way for further development and refinement of the 

method.  

5. Conclusion 

 

(a) Position 

 

(b) Position error 

Figure 10. Aircraft’s position response (with integrator) with time. Dashed 

lines indicate reference trajectory to track. 
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(a) Euler Angles 

 

(b) Tail angle 

Figure 11. Aircraft’s attitude angles and servo tail angle response. 

In this paper, we have presented a novel control algorithm 

adapted from the SE (3) geometric method for quadrotor UAV 

to control the single tri-rotor UAV. An integrator is introduced 

to increase the robustness, decrease the steady-state error and 

the stability analysis is performed by reviewing and extending 

the Lyapunov candidate function from [12]. The Attitude 

Tracking Controller exhibits almost global exponential 

stability, enabling agile manoeuvring capability while the 

Position Tracking Controller yields decent tracking 

performance, as illustrated in numerical simulations. However, 

the process of generating desired attitude is found to be quite 

sensitive to sensor noise, thus further attempts at 

implementation of different filters are required. Consideration 

of an integrator for attitude tracking is thought to be effective, 

and implementation of the entire algorithm on the 

microcontroller is required to study the difficulties that arise 

from reality. This method is also believed to be applicable for 

other types of autonomous vehicles, such as hexa-rotors and 

various kinds of Unmanned Underwater Vehicles…  

 

Figure 12. Rotor angular speed during the trajectory tracking process. 
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