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Abstract: The remediation effectiveness of a Fe°/Sand/Pozzolan (Fe°/S/Pz) ternary device using an azo-dye for 

characterization is demonstrated herein. Optimal operating conditions, which specify the proportions of solid materials, such as 

iron (Fe°), sand (S), and pozzolan (Pz), in the reactive zone (RZ), are essential factors for the performance of such 

heterogeneous devices. Thus, the operative indicator orange methyl (OM) of 2 mg/L was used. Performance parameters such 

as pH, released iron of the collected water, flow rate, and fading power were measured using filter devices containing (1) 100% 

Fe°, (2) 25%/75% Fe°/S, (3) 25%/75% Fe°/Pz, (4) 25%/0%/75% Fe°/S/Pz, (5) 25%/25%/50% Fe°/S/Pz and (6) 25%/50%/25% 

Fe°/S/Pz for a correlation of proportions, reactivity, and performance. The experiments lasted thirty (30) days per device. It 

turns out that ranges of 25% ≤ % Fe° ≤ 60%, 25% ≤ %S ≤ 50%, and 25% ≤ %Pz ≤ 50% are quite enough. The ternary device, 

in ratios of 25%/50%/25% Fe°/S/PZ, is an excellent decontaminant of orange methyl OM, with regulation of pH and residual 

iron levels, for acceptable flows. There are therefore beneficial effects of the association of a non-expansive porous material 

with Fe°-based filters to delay clogging by collecting corrosion products (CPs). 25%/50%/25% Fe°/S/PZ device allow to 

reduce greatly the proportion of iron in the reactive zone (RZ) since pure iron devices are not recommended due to clogging. 

25% ≤ % Fe° ≤ 60%, 25% ≤ %S ≤ 50%, and 25% ≤ %Pz ≤ 50% could provide a necessary framework for all Fe°-bed filters. 

Keywords: Aqueous Corrosion, Fe°-bed Filters, Orange Methyl, Pozzolan, Ratio, Sand, Zero-valent Iron 

 

1. Introduction 

The exploitation of local materials consists of their 

valorization in order to develop inexpensive technologies. This 

is the case for filtering devices intended to facilitate access to 

drinking water for the most deprived populations and those 

distant from the distribution networks of drinking water [1]. 

The Fe°/Sand/Pozzolan filter (Fe°/S/Pz) is a ternary device 

with a heterogeneous reactive zone (RZ) embedded between 

two layers of sand [2]. The full value of this device is within 

the limits and the cost of other existing filtration methods. 

Indeed, the 3-Kolshi generation filter has a 100% Fe° layer 

surmounted by a layer of sand. However, although presented 

as being very effective for the decontamination of arsenic, it 

has been shown to be limited in terms of the loss of porosity 

and rapid clogging [3-4]. The Sono filter, made of a layer of 

porous materials, has a long lifespan, but is not very effective 

in decontaminating micropollutants, microorganisms, and 

viruses, and cannot reach the expected distribution [5-6]; it will 

therefore be replaced by the KAF filter developed and 

distributed in Nepal [3]. The latter, effective for arsenic and 

pathogens, has also been found to have limitations for certain 

classes of contaminants [7]. Some systems have even been 

abandoned [8-9]. 

The Fe°/S/Pz filter is a possible solution to the above-

mentioned limitations, as the heterogeneous nature of the RZ 
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makes Fe° filters universal filtering devices [10-11]. The 

decontamination process, elucidated herein [1], involves the 

concomitant decontamination of materials from the RZ. 

Actually, the Fe°-based filters removal process seems to be 

clarified despite the confusion and flaws that have long 

marred the understanding and interpretation of its 

remediation mechanisms [12-14]. Fe° filters are an efficient 

technology for environmental sanitation [15-21], the 

production of drinking water [3, 5-6, 8, 22-25], and the 

treatment of wastewater [16, 26 -28]. Fe° cannot coexist with 

water; it undergoes oxidation, corrosion of Fe° [11, 30] into 

Fe
2+

 ions, thus implying the couple Fe
2+

/Fe° (a). The 

hydroxide ions (OH
-
) can come either from the reduction 

reaction of water (b) or from that of dissolved dioxygen (c). 

The reaction (c) is predominant as soon as the quantity of 

oxygen is sufficient. In anoxic conditions, in the presence of 

acidic waters (in the case of natural waters), the following 

process takes place [29] as shown in figure 1 below detailing 

the corrosion process. Furthermore, experience shows that on 

the surface of metal are formed iron oxides and hydroxides; 

even if the hydroxides are formed more quickly, they are 

generally less stable than the corresponding oxides. Thus, 

Fe2O3 appears in place of Fe(OH)3. formed more quickly, 

they are generally less stable than the corresponding oxides. 

Thus, Fe2O3 appears in place of Fe(OH)3. FeO is not stable at 

room temperature and is not taken into account [31-36]. 

These equations show that Fe° is a source of Fe
2+

 and H. Fe° 

thereby generates reducing agents [37-41], and the 

consumption of H
+
 ions induce an increase in pH. The 

contribution of Fe° and, therefore, of Fe° filters to the 

process of removing contaminants is related to the expansive 

nature (the increase in volume) of iron corrosion products 

(CPs) [42], the precipitation of iron hydroxides [43-44], and 

their adsorbent properties for a wide range of soluble species 

[23, 45-46]. As a result of volumetric expansion, Fe°-filters 

are subject to loss of porosity and, therefore, loss of 

permeability [35, 47-48]. The solid CPs are iron hydroxides 

and iron oxides such as Fe3O4, Fe2O3, FeOOH, Fe(OH)2, and 

Fe(OH)3 [26-27, 48-50]. These minerals have little or no 

positive permanent surface charge generated by the 

adsorption of protons on the surface of the corroded material 

[51-52]. The reactivity of Fe° towards the contaminant is 

related to the affinity of the oxide layer for the species 

present and not for passivated iron [53-55]. The suitability of 

Fe° (Fe°-filters) for environmental sanitation therefore results 

from its ability to generate iron minerals which act as 

collectors of contaminants (adsorption) [5, 11, 20, 56-61]. 

Precipitated minerals gradually fill the interstitial space 

inside the filter, resulting in a loss of permeability and 

clogging, but the elimination of contaminants due to their 

size is increased [30, 62-63]. Fe° filters allow the removal of 

contaminants in natural waters from the aqueous phase by 

adsorption, co-precipitation, and size exclusion [64-68]. The 

main groups of biological and chemical contaminants that 

have been efficiently treated by Fe° systems by batch and 

column processes are RCl (halogenated hydrocarbons), dyes, 

anions, heavy metals, pathogens, and pharmaceutical 

compounds [13]. 

 

Figure 1. Corrosion process in anoxic conditions. 
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Even if the filtering power of Fe°-filters no longer needs to 

be proven, and even if corrosion products CPs act as 

contaminant collectors, it is advisable to avoid pure Fe°-

filters, such as columns with a zone containing 100% Fe° like 

in the Harza method [14, 69]. The universal equation of the 

Fe°-filter, based on the filling of the initial porosity of a 

granular bed by the iron corrosion expansion process, 

indicates that the volumetric proportion in a filter bed should 

hardly exceed 60%, and that the most durable filters contain 

only 25% iron [13, 70]. 

Besides Fe°, the Fe°/S/Pz filter contains sand (S) and 

pozzolan (Pz). 

The sand (S) is made up of 85% to 95% silica, an 

inorganic polymer SiO2 or SiO2, xH2O, consisting of an 

assembly of silicic acid Si(OH)4 molecules condensed in 

tetrahedral geometry. At pH > 2, silica has a negative 

charge on the surface, favoring the fixation of positively 

charged species. The reactivity of silica strongly depends 

on its surface properties, i.e., the place of 

physicochemical interaction processes with the medium. 

It is governed by the nature of the groups present on its 

surface, including (Si-OH) and (Si-O-Si) groups. The 

reactivity of silica in an aqueous medium depends on the 

availability of the Si-OH groups; these are acid-base and 

adsorption sites, also involved in the reaction processes 

of silica. (Si-O-Si) are hydrophobic groups with low 

reactivity and therefore are hardly involved in surface 

chemistry in aqueous solutions [71]. Silica is very often 

added to Fe° to remedy the problem of chemical 

compaction of the iron bed which causes the clogging of 

the pores [26, 72-74], generally caused by the CPs of 

iron which are responsible for decontamination, among 

other things. 

Pozzolan (Pz) is a material with various physicochemical 

characteristics. With a neutral pH, its average chemical 

composition is 45% SiO2, 15% Al2O3, 15% Fe2O3, and 

other minor oxides [75]. It also contains lime, sodium, 

potassium, and many trace elements. The study of its 

physical characteristics reveals a high porosity, a low 

density, a capacity for absorbing water and odors, an 

aptitude for water retention, a large specific surface area, 

and a filtering and draining action, thus it has wide 

applications in the filtration and purification of water [76-

78]. Its honeycomb structure and porosity give it a water 

absorption capacity of 20% to 30% of its dry weight [79]. 

Because of its SiO2 content, in addition to its high porosity, 

pozzolan (Pz) has surface phenomena similar to those of 

sand (S) due to the silanol groups [71]. 

The proportions of the Fe°/S/Pz device are studied 

using orange methyl (OM) to create a micropollutant 

model [80]. Orange methyl (OM) is generally used in 

acid–base assays as a color indicator. Its turning zone is 

[3.1, 4.4], which makes it possible to note the presence of 

an acid medium (it turns red) or a basic medium (it turns 

yellow) [81]. Given its physicochemical properties, OM 

naturally exhibits a great affinity for solid surfaces of 

opposite charge such as certain iron CPs [82]. Since 

certain iron CPs have a positive surface in natural waters, 

we could therefore expect decontamination facilitated by 

strong electrostatic attractions and vice versa, like the 

surface of silica in an aqueous medium. The choice of OM 

is not trivial, since it is found in industrial and domestic 

waste. 

The present work aims to establish the optimal operating 

conditions by quantifying the proportions of solid materials 

such as iron Fe°, S, and Pz in the RZ. Thus, the operative 

indicator OM was used. Performance parameters such as 

fading power, pH, released iron of the collected water, and 

flow rate were measured using the following filter devices: (1) 

100% Fe°, (2) 25%/75% Fe°/S, (3) 25%/75% Fe°/Pz, (4) 

25%/0%/75% Fe°/S/Pz (5) 25%/25%/50% Fe°/S/Pz, (6) 

25%/50%/25% Fe°/S/Pz, for ratio, reactivity, and 

performance correlations. 

2. Materials and Methods 

2.1. Chemicals 

OM is used in acid-base dosages as a colored indicator. 

Its cornering zone is between [3.1-4.4] and allows to mark 

the presence of an acid medium, it turns red, or a basic 

medium, it turns yellow. It naturally has a great affinity for 

solid surfaces of opposite loads such as certain Fe°-CPs [52, 

81]. The OM comes from KEM LIGHT PVT Laboratories. 

LTD, Mumbai, India. The solution used has a concentration 

of 2.0 mg/L; the pH value is 5.2, this concentration is 

chosen to be close to natural pollution conditions [55]. A 

standard iron solution, 990 µg/mL from Aldrich Chemical 

Company, Inc. (Milwaukee, WI, USA) was used to 

calibrate the spectrophotometer. The L (+) -ascorbic acid 

from E. MERCK, Darmstadt. 90% ethanol; sodium acetate 

from ANALAR; 1.10 o-phenanthroline from NORMAPUR 

used as a reagent for Fe
2+

 complexation require for 

spectrophotometric reading, 0.2 g/L concentration [2, 81, 

86-88]. 

2.2. Solid Materials 

Three materials were used to carry out this work with six 

(6) devices, (1) 100% Fe°, (2) 25%/75% Fe°/S, (3) 25%/75% 

Fe°/Pz, (4) 25%/0%/75% Fe°/S/Pz (5) 25%/25%/50% 

Fe°/S/Pz, (6) 25%/50%/25% Fe°/S/Pz, with RZs containing 

varying proportions of materials. All samples are from 

Cameroon. 

2.2.1. Metal Iron 

The iron used in this work is iron wool made by the steel 

mills of Cameroon (Douala, Cameroon) and marketed in the 

various local markets; its granulometry is less than 1 mm. 

This material has shown its effectiveness in discoloring 

methylene blue [89]. It is used without treatment. The X-ray 

fluorescence analysis reveals: 0.62% Mn, 0.52% Si, 0.23% 

Cu, 0.2% Cr, and 0.09% Ni. 
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2.2.2. Sand 

Sand (S) is a conductive natural aggregate used to modify 

the hydraulic conductivity of geotechnical systems. The 

sand used herein is a natural material taken in the Vina 

River (Cameroon), washed and rinsed with water boiled at 

100°C for 3 hours and then dried at 110°C for 4 hours, it 

constitutes the different layers L1 (upper), L2 (intermediate 

or RZ) and finally L3 (lower). For its availability and 

mixing agent, sand was used in Fe°/H2O systems [90-91]. 

The average chemical composition per X-ray diffraction 

reveals: 81.5% SiO2, 5.60% Al2O3, 4.71% Fe2O3, 3.86% 

CaO, 1.75% TiO2, 0.91% K2O, 0.48% P2O5, 0.26% SO3, 

0.32% MnO, 0.08% SrO, 0.03% V2O5. 

2.2.3. Pozzolan 

The pozzolan (Pz) used comes from Idenau (Southwest, 

Cameroon) and has undergone the same pre-treatment as 

sand. It is L2 layer (RZ). Pozzolan has a porosity of 60% 

which serves as a reservoir for Fe°CPs [2, 75-76]. And has 

adsorption and absorption properties. The average chemical 

composition per X-ray diffraction is: 81.18% SiO2, 10.00% 

Al2O3, 2.19% Fe2O3, 0.59% CaO, 0.46% TiO2, 3.60% K2O, 

0.05% MnO, 0.02% SrO, 0.02% ZrO2. 

The chemical compositions were determined with the 

involvement of the Mission for the Promotion of Local 

Materials (MIPROMALO) in Yaoundé, Cameroon. 

The table 1 below is a rundown of the materials in the top 

layer of the filter (L1), in the reactive zone (RZ) or (L2), and 

in the filter output (L3), for a six column. A porous 

membrane separated the two layers of materials. 

Table 1. Symbol, Granulometry, source, and nature of the materials used - 1Communal Market, 2North Region, 3South West Region. 

N° Materials Symbol Granulometry Source Nature 

1 Iron Fe° ≤ 1 mm Collected (CM1) Adsorbent Generator 

2 Sand S 1 mm Collected (NR2) Adsorbent 

3 Pozzolan Pz 2 mm Collected (SWR3) Porous Absorbent / Adsorbent 

Table 2. Names, Mass (g), and Proportions (%) of Fe°, S, Pz in different filter processes. 

 

Column 1 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

Filtering Fe° Fe°/S Fe°/Pz Fe°/S/Pz Fe°/S/Pz Fe°/S/Pz 

Process 100% 25%/75% 25%/75% 25%/0%/75% 25%/25%/50% 25%/50%/25% 

Mass (g) (g) (g) (g) (g) (g) (g) 

1 L1 60 60 60 60 60 60 

2 Fe°(RZ) 40 10 10 10 10 10 

3 S (RZ) 00 30 0 00 10 20 

4 Pz (RZ) 00 00 30 30 20 10 

5 L3 120 120 120 120 120 120 

 

2.3. Methods 

2.3.1. Analytical Settings 

For each specific RZ filter, we measured the filtering 

power of each device according to the proportions of the 

materials, pH, residual iron, and flow rate, for the most 

efficient device. The pH was measured using a Hanna 

model HI991301 pH-meter multifunction (temperature, 

conductivity). The OM content in the filter was 

determined using a UV–Vis spectrophotometer at 461 nm 

(Ling type 9100-9400) with a spectral range of 320–1100 

nm. The effectiveness of fading the filter in the initial MO 

(Co) was dependent on the residual OM content; the 

efficiency (E) to discoloration is given by the following 

relationship: 

��%� = �1 −	 
�
�
 × 100. 

Residual iron was determined according to the 1.10 o-

phenanthroline protocol. [86]. The UV–Vis 

spectrophotometer was read at 510 nm. 

2.3.2. Filter Devices and Proportions 

The six filter devices listed below were used to determine 

ratios. The reactive zone (ZR) contained 40 g of material for 

each filter, which corresponds to 100%. This percentage was 

distributed in filters according to filter devices; see Table 2. 

The RZ or L2 (Fe°/S/Pz) was sandwiched between two layers 

of sand (S) L1 and L3. Each day, 0.5 liters of orange methyl 

solution were filtered through each filtering device. The 

following different proportions were studied: 100% Fe°; 

25%/75% Fe°/S; 25%/75% Fe°/Pz; 25%/25%/50% Fe°/S/Pz; 

and 25%/50%/25% Fe°/S/Pz, as shown in figures 2 and 3. 
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2.3.3. Diagrams of the Experimental Processes 

 

Figure 2. Binary Filtering Devices. 

 

Figure 3. Ternary Filtering Devices. 
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3. Results and Discussions 

3.1. OM Discoloration 

3.1.1. Proportions of Fe°, S, and Pz in Binary Fe°-bed Filters 

 

Figure 4. Orange methyl (OM) discoloration with mono and binary filter devices. [OM] o = 2 mg/L. 

Figure 4 depicts the effectiveness of the fading filters 

containing 100% Fe°; 25%/75% Fe°/S; and 25%/75% 

Fe°/Pz. The experimental device is that described in 

Subsection 2.3.2 and 2.3.3 in which the reactivity of the 

100% Fe°-filter was compared to the filters containing 

25%/75% Fe°/S and 25%/75% Fe°/Pz, in the presence of an 

OM solution at 2 mg/L and at pH = 5.2. These three devices 

differed only in terms of the RZ embedded between the two 

layers of sand In binary devices, the proportion of Fe° 

decreases from 100% to 25%, a decrease of 75%. 

As a result, we found that the decrease in the proportion 

of Fe° in filters did not result in a loss of responsiveness, 

but rather there was a resurgence when the Fe° was 

combined with the S, and this was again more likely with 

Pz. We therefore went from a 70% average discoloration 

rate to 80% for an RZ Fe°/S, and 90% for an RZ Fe°/Pz. 

With a 25% Fe° filter, the efficiency of discoloration 

improved, which corroborates the fact that it is necessary to 

avoid pure Fe° filters, and that the most durable filters 

contain no more than 25% Fe° [2, 69.70, 83-85]. The binary 

filtering device 25%/75% Fe°/Pz was the most effective. 

Actually, such a result is an excellent report on the 

contribution of the RZ nature over the lifetime of the 

filtering system. These results are consistent with the 

disposal process of Fe°-based filters. Pure, they are prone to 

rapid clogging [29, 35, 48]; associated with S [82] and Pz 

[2, 71, 75-78], they are improved [12-14, 70]. The reactivity 

of the Fe°, and largely that of Fe°-based filters, involves 

electrochemical reactions of the wet corrosion of iron, and 

generates adsorbents that collect contaminants responsible 

for the discoloration. So, 100% Fe° ≤ 25%/75% Fe°/S ≤ 

25%/75% Fe°/Pz. 

3.1.2. Proportions of Fe°, S, and Pz in Ternary Fe°-bed 

Filters 

Figure 5 depicts 25%/0%/75% Fe°/S/Pz, 25%/25%/50% 

Fe°/S/Pz, and 25%/50%/25% Fe°/S/Pz devices. The 

experimental process is that described in Subsection 2.3.2 

and 2.3.3 in which the 100% Fe° filter was transformed into a 

ternary device with three materials in the RZ. The filters with 

25%/0%/75% Fe°/S/Pz, 25%/25%/50% Fe°/S/Pz, and 

25%/50%/25% Fe°/S/Pz were tested with OM solution (2 

mg/l) and a pH = 5.2. These three devices differed only in 

terms of the RZ sandwiched between the two layers of sand. 

Since the initial proportion of Fe° in the scheme was now 

divided by four (4), we varied the rate of S (0%, 25%, and 

50%) and Pz (25%, 50%, and 75%) in the RZ of the various 

ternary filtering devices. 

The concomitant presence of the three materials in the RZ 

and the combined effect of their responsiveness reduced the 

rate of materials in the device while maintaining the 

efficiency at discoloration. Because of the great absorbent 

power of the Pz [71, 76-79], 25% seems to suffice in the 

presence of S and Fe°. Furthermore, 25% S also seems to be 

sufficient within a ternary device with 25%/25%/50% 

Fe°/S/Pz. Some studies were found that the presence of 

different functional groups in the dyes such as OM, can be an 

important factor for selective interaction with iron oxide 

nanoparticles [2, 26-27, 94]. The properties to serve the 

system as receptacles for Fe°CPs, makes Fe°/S/Pz stable 

device, which allow to reduce the proportion of Fe° in the 

RZ, Figure 5. 
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Figure 5. OM discoloration with ternary filter devices. [OM] o = 2 mg/L. 

However, silica is very often added to Fe° to remedy the 

problem of chemical compaction of the iron bed that causes 

clogging of the pores [26, 72-74], which is usually caused by 

iron CPs that are responsible for decontamination, among 

other things; therefore, it is important to retain a sufficient 

proportion of sand to ensure this does not occur early. The 

Fe°/S/Pz ternary device in proportions of 25%/50%/25% is a 

good compromise, since 25%/0%/75% Fe°/S/Pz ≈ 

25%/25%/50% Fe°/S/Pz ≈ 25%/50%/25% Fe°/S/Pz. 

nevertheless, it would be more accurate to suggest that for 

discoloration ranges of 25% ≤% Fe° ≤ 60%, 25% ≤% S ≤ 

50%, 25% ≤% Pz ≤ 50% are quite enough [2, 70]. 

 

Figure 6. pH value with mono and binary filter devices. [OM] o = 2 mg/L, initial pH = 5.2. 

3.2. pH Value 

3.2.1. Proportions of Fe°, S, and Pz in Binary Fe°-bed 

Filters 

Figure 6 depicts the pH with 100% Fe°; 25%/75% Fe°/S; 

and 25%/75% Fe°/Pz. These curves were therefore obtained 

from a 75% reduction in Fe° in the RZ. The measured pH 

values for the three devices have mean values between 6.5 

and 7.5, which are acceptable according to the WHO 

guidelines (6.5 to 9.5). We did not see a change in pH due to 

the association of sand in the binary filters for these 

proportions in the RZ; this was true even if the reactivity 

processes were different, since Fe° CPs are responsible for 

decontamination [2, 11, 29-68]. Sand reacts through surface 

phenomena: silanol clusters thus attract opposite-charged 

species and vice versa through repulsion of OM [26, 71-79]]. 

Thus, the supply of Pz to the 100% Fe° filter slightly 

changed the pH because the Pz, due to its porous structure, 

could adsorb the OM and the iron CPs, resulting in an 

increase in pH [29, 76-78]. 
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3.2.2. Proportions of Fe°, S, and Pz Materials in Ternary 

Fe-°bed Filters 

Figure 7 depicts 25%/0%/75% Fe°/S/Pz, 25%/25%/50% 

Fe°/S/Pz, and 25%/50%/25% Fe°/S/Pz devices, and shows 

that for a proportion of 25% Fe°, the variation in the 

proportions of S at 25%, 50%, 75%, and Pz at 25%, 50%, 

75% in the ternary devices always had a pH of between 6.5 

and 7.5. The curves are even identical for the first fortnight, 

and the difference is not significant for the rest of the filter's 

life. From a 50% rate of Pz in the filtering device, the 

addition of this material seems to have no effect on the pH. 

The ternary device of 25%/50%/25% Fe°/S/Pz still represents 

a good compromise for pH correction. The 25%/25%/50% 

Fe°/S/Pz device provides a pH > 7. 

 
Figure 7. pH value with ternary filter devices [MO] o = 2 mg/L, initial pH = 5.2. 

3.3. Iron Release 

3.3.1. Proportions of Fe°, S, and Pz in Binary Fe°-bed Filters 

Figure 8 depicts Fe°-CPs with 100% Fe°; 25%/75% Fe°/S; and 25%/75% Fe°/Pz, and the presence of iron in the collected 

water of 100% Fe° and 25%/75% Fe°/S devices. The lack of iron for the 25%/75% Fe°/Pz filter shows the need to combine Fe° 

with Pz as to retain the Fe°-CPs. 

 

Figure 8. [Fe] (mg/L), OM filtrate, with mono and binary filter devices. 

3.3.2. Proportions of Fe°, S, and Pz in Ternary Fe°-bed 

Filters 

Figure 9 confirms the value of associating Fe° with other 

materials. Indeed, the passage of Fe
2+

 in solution during the 

oxidation of the Fe° seemed to depend on the proportion of 

Pz in the RZ. The residual iron content was almost zero at 

75% Pz in the RZ of a ternary device. 
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Figure 9. [Fe] (mg/L), OM filtrate, with ternary filter devices. 

At 50% Pz in the RZ, the released iron content was 

negligible. At 25% Pz, this rate was slightly more 

effective, and even reached about 10 mg/l; however, this 

value remained well within the range of the WHO 

recommended values. A judicious ratio of 25% ≤% Pz ≤ 

50% in a ternary device is effective. Even though the pH 

value significantly impacts the extent of Fe° dissolution, it 

has been demonstrated elsewhere and refs cited therein 

that in this pH range, the solubility of iron is minimal 

[95]. So, S and Pz are not only admixing agent in Fe°/H2O 

systems, but they actually contribute to the elimination 

process as explained above. Therefore, Pz 

absorption/adsorption capacity makes Fe°/S/Pz an 

excellent device. 

 

Figure 10. Flow rate (m3/s) with binary filter devices. 

3.4. Flow Rate 

3.4.1. Proportions of Fe°, S, and Pz in Binary Fe°-bed 

Filters 

Figure 10 corroborates what is said above. Indeed, the 

filter loses its porosity over time; however, it was the 

25%/75% Fe°/Pz filter that had the lowest throughput. This 

could be explained by the clogging of the pores of the Pz 

which would precipitate the clogging. The Pz effectively 

contributes to the elimination of released iron in the 

medium and discoloration of the OM, but at the expense of 

flow rate. 

The decrease of flow is attributed to the progressive 

clogging due to accumulation of OM in the initial pores and 

interstices systems. It is now agreed that pure Fe° systems are 

efficient but not sustainable. The replacement of a fraction of 

Fe° by a non-expansive porous material was therefore found 

as alternative approach [2, 5, 97-98]. 



24 Suzanne Makota S. N. et al.:  Ranges and Fitting Ratios of Natural Aggregates for a Sustainable and Effective   

Fe°/Sand/Pozzolan Ternary Device Using Orange Methyl 

 

3.4.2. Proportions of Fe°, S, and Pz in Ternary Fe°-bed Filters 

 

Figure 11. Flow rate (m3/s) with ternary filter devices. 

Figure 11 shows the evolution of the flow based on the 

content of Pz and S in the ternary filtering devices. It 

appears, therefore, that a high proportion of Pz hinders the 

flow, while a high proportion of S (sand) improves it. The 

filter containing 25%/50%/25% Fe°/S/Pz still seems to be the 

best compromise since it had the highest flow during the first 

15 days and seems almost identical to the others in the 

second half of the filter's life. Such a device shows the need 

to introduce sand as to increase the porosity of the filter, and 

therefore, to improve its effectiveness in the fluidity of the 

filtering process. The Pz remains necessary for its 

contribution to the collection of micropollutants and in situ-

generated Fe°-CPs. 

4. Conclusion 

This work aimed to establish the optimal operating 

conditions of a Fe°/S/Pz device through an OM colored 

indicator. For this, filtering devices containing 100% Fe°, 

25%/75% Fe°/S, 25%/75% Fe°/Pz, 25%/0%/50% Fe°/S/Pz 

25%/25%/50% Fe°/S/Pz, and 25%/50%/25% Fe°/S/Pz 

material ratios in the RZ were used. The results obtained 

show that a 100% Fe°-filter is effective for discoloration of 

OM but allows residual Fe
2+

 to pass through the filter and is 

thus prone to early clogging. The combination of another 

material with the Fe°-bed filter is necessary. This was shown 

by the binary filter containing 25%/75% Fe°/Pz for which we 

obtained excellent discoloration of OM and elimination of 

the released iron in the filter at the expense of flow. The 

addition of sand was indispensable in terms of avoiding 

compaction. A ternary filter containing 25%/50%/25% 

Fe°/S/Pz constitutes the most effective device in terms of 

decontamination of OM and the flow rate. Ratios may vary 

within the ranges 25% ≤ % Fe° ≤	60%, 25% ≤% S ≤	50%, 

and 25% ≤% Pz ≤ 50% for good pH correction and concrete 

mitigation of residual iron according to the WHO 

recommendations. These frames leave room for the 

introduction of other materials into the RZ for the 

implementation of quaternary systems Fe°/S/Pz/X. They also 

provide a framework for any experimenter, for 

reproducibility and accuracy of results. 
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