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Abstract: In his endeavor to find a concrete evidence in favor of the Copernican picture of the solar system, the English 

astronomer James Bradley made a series of astronomical observations during the period (1725-1728) aiming to detect a stellar 

parallax. His findings, which manifested indeed an annual apparent cyclic motion of a star, were however at conflict with what 

is expected in a parallax. To his surprise, the result of every measurement obtained corresponded to what he expected to get in 

a measurement done three months earlier. Bradley realized that he was witnessing a new physical effect, and he presented an 

explanation that conceived light as a corpuscular stream travelling at finite velocity. Despite that Bradley’s explanation of the 

stellar aberration effect was inadequate, the equation which he derived to quantify the aberration angle, predicted a better 

estimation of light velocity, and the aberration phenomenon itself was a concrete support of heliocentrism. Stellar aberration as 

well as some other optical experiments, whose explanations posed challenges to the existing physical theories in the late 

nineteenth century paved the way for the emergence of the special theory of relativity. In the current work we employ the 

theory of universal space and time to show that a given direction in a frame of reference is tilted when observed in a moving 

frame by an angle that depends on the direction itself and the velocity of the moving frame. The latter fact is utilized to explain 

stellar aberration, determine the deviation of a star’s vision direction from its true one, and deduce its apparent position at any 

instant as a function of its latitude and time. The novel concept of aberration correction vector is employed to derive the 

apparent elliptic path of an observed celestial object at any time. The concept of graded inertial frames is introduced and 

utilized to deal with aberration when observed from a satellite in a similar way to its treatment when observed from Earth. The 

transformation matrix between a geocentric frame and a satellite’s non-rotating frame is derived and used to transform 

temporary Earthly vision directions to the satellite’s frame. Furthermore, the transformed vectors are adopted as transient fixed 

directions relative to which the vision directions of a star from the satellite are specified throughout one revolution. Satellites 

connective matrices are constructed to make geometric information regarding the celestial sphere in one frame immediately 

usable by observers on Earth and in all other satellites. 

Keywords: Stellar Aberration, Aberration in a Satellite, Graded Inertial Frames, Stars’ Apparent Elliptic Trajectories, 

Aberration Correction Vector, Satellites Connective Matrices 

 

1. Introduction 

Stellar aberration [1], as observed from Earth, is the 

phenomena of apparent periodic motion of a star about its 

“true” position with a period of one year. The observed star 

appears displaced towards the Earth’s orbital velocity, and 

the successive displacements associated with the Earth’s 

revolution around the Sun add up to make the apparent 

annual periodic trajectory. The angle �  between the 

directions of the true and apparent positions of the observed 

star attains a maximum ���� � 20.4955" each half a year 

starting from Earth’s nearest (or furthest) position to the 

observed star. The latter maximum, also called aberration 

constant, is quite close to the ratio of the Earth’s orbital 

velocity to light’s speed. 

Stellar aberration, was discovered by Bradley in 1727 [2-

6], who also employed the corpuscular model of light to 

explain this effect [4-6]. Aberration can also be accounted for 

in terms of light’s waves traveling through the ether, 
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provided the ether remains completely undisturbed by the 

earth's motion [7-9]. Bradley’s explanation of stellar 

aberration however, proved incorrect since it couldn’t 

account for the negative results of Airy Experiment [4]. 

In the current work we employ the theory of universal 

space and time (TUST) [10-13] to explain stellar aberration. 

The goals and main results in this work are: 

To find the relation between an orientation in a moving 

frame s relative to the corresponding one in a universal frame 

S. The concept of the body-observer triangle [12] in TUST is 

used to get the sought relation. 

Utilize the found relation to explain the stellar aberration 

phenomenon through identifying S and s by heliocentric and 

geocentric frames respectively. The formula obtained for the 

aberration angle, which is different from Bradley’s [2] and 

the relativistic expressions [14], is in accord with 

experimental results as it predicts a value for the aberration 

constant just 0.006" less than its generally accepted value, 

and it determines the aberration angle and the star’s apparent 

position at each instant of the year. 

The concept of aberration correction vector is introduced 

and used to determine the apparent motion of a given star in 

the celestial sphere, as well as, its associated vision directions 

at any time.  

The observed apparent elliptical orbits of distant celestial 

objects find in our approach a simple mathematical 

derivation. 

The concept of graded inertial frames is introduced and the 

direction’s change of light beams between them is employed 

to quantify aberration in an Earth’s satellite (or any planet’s 

satellite) relative to a momentary apparent position of the star 

from Earth (from the planet). 

The transformation matrix between a geocentric frame and 

a satellite’s non-rotating frame is set up and utilized to 

transform celestial positions measurements between the two 

frames. In particular, the temporary vision direction of a star 

from Earth is adopted as a temporary fixed direction 

throughout one revolution to which the apparent direction 

from the satellite is referred. 

To the best of our knowledge, this work is the first  

to determine the aberration angles and star’s vision 

directions as functions of their latitudes and time, and to 

specify the minimum value of the aberration angle pertaining 

to a given star, 

to spell out the significance of graded inertial frames and 

apply it to tackle aberration as observed from an Earth’s 

satellite in a similar way to its treatment in a sun’s satellite, 

namely the planet Earth. In earlier works [13, 15] the Earth’s 

satellite motion was assumed to be in the ecliptic, whereas 

our present satellite is moving in an arbitrary plane (of course, 

through the Earth’s center). The existence of graded inertial 

frames makes it understood why aberration as observed from 

Earth depends to a great degree of accuracy on its velocity in 

the heliocentric frame. 

to set up the Earth-satellite transformation matrix together 

with the associated connective matrices, and thus set one-to-

one correspondences for distant celestial positions between 

all satellites. 

2. Direction’s Change Between Two 

Frames 

The straight path followed by a light’s ray in vacuum in 

any inertial frame S is determined by two points, or by a 

point and a direction. We are concerned here with distances 

much larger than wavelength, and the word point in the 

above context may stand for a small ring through which light 

passes and whose dimensions are small in comparison with 

the length of the straight segment connecting the two points. 

It is also clear in the latter context that the experimental 

equivalent of a segment connecting two points is a telescope. 

Consider a beam of light propagating in the universal 

frame S parallel to the direction �. The path of a narrow beam 

(say a ray) may be determined in S by two points � ∈ � and � ∈ �; we assume the ray propagates along the vector BO∥ �. 

If s is an inertial frame moving at a velocity � = �� in S, then 

what would be the orientation of the segment �� if looked at 

in the moving frame s from its end O? (or shortly, how does ��  appear in s?). The s observers find the answer [13] 

through sending a pulse of light from a point � ∈ � when at � ∈ �  and receiving it at  � ∈ �  by an s observer who 

happens to be at � ∈ � when light arrives, call it � ∈ �  (in 

language of TUST, the observer which is conjugate to O 

[10]). When the pulse arrives at � ∈ �, the source � ∈ � is at 

a point �′ ∈ �. In the moving frame s light makes the trip (� ∈ � → � ∈ �)  whose path "#  coincides when light is 

received by o (at O) with the straight segment "′�  in the 

frame S. Reverting to the body-observer triangle (Figure 1) 

[12] we find that, when light is received, the vector BO is 

seen in s tilted towards the frame s’ velocity v by an angle � 

given by the equation, 

sin � = ' sin ( , (' = � *⁄ ),                   (1) 

where ( ≡ ∠(�, ��) ∈ [0, π]  is the angle between ��  and 

the velocity � of s relative to S. Phrasing it in different words, 

the conjugate observers � ∈ �  and � ∈ �  see the ray along 

the “conjugate” coplanar directions (−�)  and (−�2) 

respectively, where � and �2 are unit vectors of the paths BO 

and "′� respectively. 

The body-observer triangle affirms the following relation 

3(�2 + '�)5 = 6�, 73 = 1 91 − ':⁄ ;,              (2) 

between the conjugate directions, the respective initial and 

final position vectors *6� and 3*5�< in S of the light’s source � ∈ �, and the vector velocity of the moving frame. Taking 

the cross product of both sides of (2) by � yields (�< + '�) × � = 0,                        (3) 

which in turn yields equation (1).  

The sides’ lengths of the body-observer triangle appearing 

in (Figure 1) can be expressed in terms of the initial distance |��| = *6 = ? of the source from the receiver: 
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|"��| � @�', (!?,                        (4) 

|�"�| � '@�', (!?,                      (5) 

where the “Euclidean factor” @�', (! is given by [10-13] 

@�', A 1 (! , BCDEFG9HIBJEKLJF

HIBJ � M�B,F!

9HIBJ.      (6) 

The entity Γ�', (! is called the “scaling factor”. Using (4), 

(6), and the identity Γ�', (!Γ�', A 1 (! � 1, we write (2) in 

the form 

1�< � �1 1 ':!@�', (!�1�! 4 '�,           (7) 

which determines the relation between the vision directions 

�1�<!  and �1�!  of the same ray in s and S respectively. 

Equation (7) shows that given the vision direction of an 

object in one frame determines its vision direction in the 

other, and that the vision direction �1�<!  in the moving 

frame s is tilted from its counterpart �1�! in S towards its 

velocity � � *'�.  

 

Figure 1. Body - observer triangle. The same beam is seen along �� in S 

and along #"� in the moving frame s. The angle between the two paths is the 

aberration angle � � -���, #"O! � -��, �<!.  The velocity of s in S is 

denoted by �. ( � -���, �! is the angle between � and the initial position 
vector of the light’s source. 

 

Figure 2. Seeing �� from � � � at � � �. 

Remarks 

1. When looked from s at the vector OB (i.e. from B) 

(Figure 2), it is seen to coincide with #�� which makes with 

OB the same angle �, given by (2.1). Here, a pulse of light 

emanates from � � �  when at � � �  and heads to � � � 

where it is received by � � �. By this moment, the source of 

light o is at �� � � and the path of the pulse, which is ob in s, 

coincides with #O� in S. 

2. In aim to focus on our goal, which is the deflection of a 

light path when observed from a geocentric frame from its 

orientation in the heliocentric frame, we depicted in Figure 1 

(and in Figure 3b) the views of S and s when s is the moving 

frame. The full picture is that s can be considered stationary 

while S is moving at velocity (1�) in s, and the light’s path 

bo in s is deflected by �1�! when observed from S (Figure 

3a) [10-13]. 

 

Figure 3. a. The pulse’s path is "# in s and ��# in S when s is stationary, b. 

The pulse’s path is �� in S and "�� in s when S is stationary. 

3. Ray’s Direction in a Moving Frame – 

Aberration Angle 

Consider a beam of light propagating in the universal 

frame S parallel to the direction �. The path’s direction of a 

narrow beam, or a ray, is determined in S by a vector B� � �, 

where � and � are points in S, say two small rings through 

which the ray passes. We showed in section 2 that the path of 

every light’s ray in the moving frame s (determined also by 

two rings) is tilted towards the direction of the frame s’ 

velocity �. A segment ��P of the beam’s path in S will be 

seen in the moving frame s to coincide with "P
O �P, and the 

segment ��  is seen in s to coincide with "��  when light 

from � � � Q5 � � � arrives at O (Figure 4). We assume that 

only a part of the beam travelling in the direction � in S is 

picked at �H while the remaining part continues its path to O. 

At the latter instant, the s’ path which coincided earlier with 

"P
O �P is now coinciding with "�#P

O . Note that receiving the 

same ray (from � � � Q5 � � �) by s observers at different 

points of BO takes place at consecutive times. For instance, 

light arrives at �H , 3 |bH
O �P| *⁄  seconds after arriving at B, 

and it is received at O, 3 |#P
O �| *⁄  seconds after being 

received at �H. At the instant of the final reception (which 

takes place at O) all partial paths in s, considered above, are 

aligned on the same vision line in s which coincides with �"� 
in S. At any point, say � � �,  of the ray one could have 

chosen the segment which precedes B to observe the ray’s 

direction from s, and the result would be: the ray’s direction 

in s is already tilted from its direction in S.  

Aberration plane: The path of the incoming ray (say BO) 

in S and the vector velocity � of s define a plane in S, and in 

s, which we call the aberration plane the ray. Because the 

latter plane contains the ray’s path in s, the aberration plane 
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of a ray is that which contains the moving frame’s velocity 

vector and the path of the ray in either frame. An incoming 

beam of light originating from a distant star S can be seen by 

a telescope in s with ocular and objective lenses r and o 

respectively, only if the telescope T#  is set along the 

direction #"� which is tilted from the direction �� towards 

the direction of motion, by the aberration angle � (Figure 5). 

In contrast, the same star S  is seen by a telescope in S if 

oriented along ��. 

 

Figure 4. The beam’s path (in brown) which is determined in S by � � � and 

the direction �, is seen (in red) in s tilted by the same angle � regardless of 
the point from which it is observed. 

 

Figure 5. The orientation of a telescope T# in the moving frame s, that 

allows visioning a distant celestial object S, is tilted from the object’s vision 

line direction in S by the aberration angle �. The dashed black double lines 
represent an imaginary telescope in the frame S. 

4. Stellar Aberration 

Consider a "distant" star S, in the sense that the radius of 

the earth's orbit is negligible in comparison with the distance 

between the sun and the star S. In this context, the phrase 

“the vicinity of the sun at some instant 6U” will mean [15] the 

region of space containing the sun and Earth and whose 

dimensions remain negligible in comparison with the 

distance between the sun and the star S  throughout a long 

period of time. In the stationary inertial frame � , VWXY 

with origin at the sun’s center "N" and the coordinate plane 

XY in the ecliptic, the motion of S, as seen from the sun’s 

vicinity, has no observable effect on its location in S during a 

relatively long period of time (centuries), and in particular, 

on the angle Θ, between VS and the ecliptic (ecliptic latitude), 

which remains almost unchanged. The Z-axis of the 

heliocentric frame S is perpendicular to the ecliptic, the X-

axis passes through the Earth’s center at vernal equinox, and 

the Y-axis direction is in accordance with S being right-

handed. The zero of timing may be chosen at some vernal 

equinox. The latter special heliocentric frame is called an 

“ecliptic frame” [1, 16]. 

Rays from S received by all S observers in vicinity of the 

sun are practically parallel, and the star S appears to all these 

observers at the same ecliptic latitude Θ. Let � , @[\] be a 

geocentric frame whose axes are parallel to S’ axes. The 

results obtained in s are naturally valid in all geocentric 

frames that results from s through rotations or translations, 

such as equatorial and horizontal frames (see [1] for 

definitions). 

All S-observers (in vicinity of the sun) see the rays from 

the star S  throughout the year coming along the direction 

� � 1�O, where �O is the unit vector of ^_. For a geocentric 

observer, which is moving around the sun, the direction of 

the received ray is tilted from its direction in S in the 

momentary aberration plane by the aberration angle ��5! , 

where 

sin ��5! � `

C
sin (�5!                           (8) 

and (�5! is the angle between the fixed direction ^_ in S and 

Earth’s momentary orbital velocity ��5!  around the Sun. 

Consequently, a star S can be seen by a terrestrial telescope 

ro only if it is tilted from the fixed direction ^_ in S towards 

Earth’s velocity by the aberration angle �.  The vector 

velocity � � ��a of the earth around the sun, with �a is the 

unit tangent vector to Earth's orbit, rotates approximately 

uniformly in S and in the geocentric frame s, with an angular 

velocity b � 2A cQd/\fQc ; its magnitude v is almost 

constant. There follows that the aberration plane containing 

this rotating vector, the fixed direction �O, and the tilted 

direction T#, rotates about ^_ in S and about g_ in s with 

angular velocity b � 2A cQd/\fQc. Assuming Earth’s orbit 

is approximately circular, which is equivalent to an almost 

constant magnitude v of the orbital velocity, the components 

of the unit vector �O of the negative direction of the incoming 

ray from the distant star �Θ, Φ!, in S or s, are: 

�O � �cosΘ cos Φ , *osΘ sin Φ , sinΘ!                  (9) 

 

Figure 6. ^_ and g_ are essentially parallel because the star S is too far. 

The true position of S is along the same direction �� in the heliocentric and 
geocentric frames S and s. 

The components of the earth’s orbit tangent vector �k are 

�a � �cos � H
:

A 4 b5!!, sin �H
:
A 4b5!, 0! 

� �1sinb5, cosb5, 0!.                    (10) 

The cosine of the angle ( , -���, �a!  between Earth's 



 American Journal of Astronomy and Astrophysics 2021; 9(3): 22-31 26 

 

vector velocity and the negative direction of the incoming ray 

is 

cos( = �O. �k = cosΘ sin(Φ − b5).           (11) 

Identifying �lm � by �, we get from (8) 

�: ≈  sin:� = o�*p: (1 − cos:Θ sin:(b5 − Φ)) 

= oC̀p: (1 − cos:Θ sin:q),                (12) 

where q = b5 − Φ = ∠(^gr, ^g). Because Earth is nearest 

to the star (Θ, Φ) when it is at the position @U of longitude Φ 

in the ecliptic, q  measures the angle between the current 

position vector of the Earth in its orbit and its position vector 

when closest to the star S. Moreover, the velocity of Earth in 

its closest position to the star is perpendicular to the plane 

which contains the sun’s center, Earth’s center, and the star S. 

At the latter position the incoming ray is perpendicular to 

Earth’s velocity: �k. �O = 0. 
For a given distant star the ecliptic latitude Θ is fixed, and 

the relation (12) determines the aberration angle � in terms of 

the earth's position in its orbit in the ecliptic, or equivalently, 

at any instant throughout the year. The Earth’s velocity vector 

reverses direction each half a year which yields the angle 

2� = 2 C̀ (1 − *��:Θ sin:q)H/:            (13) 

between two lines of sight separated by this period. 

The aberration constant s  [1] is by definition the 

maximum apparent annual displacement of a star or a 

celestial object due to Earth's orbital motion around the sun; 

its generally accepted measured value [1] is s = 20.49551". 

By (13) the aberration angle attains its maximum value 

�t��� = � *⁄                               (14) 

for sin q = 0, which corresponds to q = 0 �c q = A, and its 

minimum value 

�t�KL = C̀ sin Θ = �t��� sin Θ               (15) 

for  q = uJ A �c q = vJA . Substituting in (14) by  * ≈299792.458 yz �⁄  and � ≈ 29.78 {�E  [1, 17] we obtain the 

value 

�t��� ≈ �* = 29.78299792.458yz cQd 

× 57.2958 df|cQd × 3600 �f*df| = 20.4894" 

for the aberration constant, which is about 0.0061′′ less than 

its generally accepted value quoted above. 

The obtained value of s was gotten under the assumption 

that Earth’s orbit is circular, while in reality the eccentricity 

of the elliptical Earth’s orbit varies in cycle extending to 

hundreds thousands of years [1] from 0.0034 5� 0.058; it is 

currently 0.0167. Moreover, the Earth’s spinning motion was 

not taken into account. 

Aberration Observed from a Planet: Provided the orbits 

are approximately circular and the observed celestial object is 

very far from the sun, the aberration constants �t���  and �~��� for Earth and another solar planet p are related by [13] 

���������� = `�`� = �����,                       (16) 

where �~  Qmd c~ (�tQmd ct)  are the planet’s (the earth’s) 

velocity and distance from the sun respectively. Equation (16) 

states that the aberration constant is inversely proportional to 

the square root of the planet distance from the sun. The first 

equality in (16) follows from two equation of the form (14) 

for Earth and for a planet; the second follows from the 

equality of centripetal and gravitational accelerations of a 

planet: �: c⁄ = �� c:⁄ , where G is the gravitational constant 

and M is the Sun’s mass. 

Recalling that the telescope in s is tilted by �  towards 

Earth's orbital velocity vector, the observed ecliptic latitude 

of the star is highest for q = uJ A  where Earth would be 

receding from the star and lowest for q = vJ where it would 

be approaching it. The ecliptic latitude of the star at q = 0 or q = A  remains unchanged because the telescope is tilted 

horizontally by �t��� . The latter longitudes correspond to the 

nearest and furthest positions of Earth from the star 

respectively.  

Two Special Cases 

The Ecliptic Poles: If the star S is at either ecliptic pole, (Θ = ± A 2 ⁄ ), the line of sight to S would be perpendicular 

to the ecliptic, and the Earth’s velocity would be  

perpendicular to the incoming beam of light (( = ∠(�, �O) =A 2)⁄ .  In this case, both equations (8) and (12) reduce to � = � *.⁄  

The Ecliptic: If the distant star S  is in the ecliptic, then 

setting Θ = 0 in (12) yields 

� ≈ sin� = C̀ cos(b5 − Φ).               (17) 

The plane of aberration in this case is the ecliptic plane 

itself, and the star appears to oscillate harmonically in the 

celestial plane, perpendicular to the line of sight, about its 

longitude Φ with a period of one year. The aberration angle 

attains its maximum absolute value (14) at q ≡ b5 − Φ =0, A (closet and furthest locations from the star), and vanishes 

(� = 0) for q = A 2⁄ , 3A 2⁄ . I.e. a maximum absolute value 

for � occurs when the line of sight to the star is perpendicular 

to Earth’s velocity and a minimum value (= zero) when it is 

along it. 

A Final Remark: Because Earth revolves almost uniformly 

around the sun in the ecliptic, observations of the celestial 

sphere should have an approximate rotational symmetry 

about VY (�c @Y).  In particular, entities pertaining to 

aberration of a celestial object may depend on its latitude but 

not on its longitude, despite the latter may appear as a zero 

level for specifying Earth’s positions on its orbit, i.e., in 

functions of the term q ≡ b5 − Φ which measures the angle 

between the position vectors of Earth at an instant t and its 

nearest position to a star of longitude Φ. 
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5. Airy Telescope Experiment 

According to this experiment [18] one expects that if the 

telescope T# is filled with water, the aberration angle will 

increase by about one third. This expectation is based on the 

fact that the speed of light in water is about 3* 4⁄  which 

should yield a new aberration angle �O ≈ � (3* 4⁄ )⁄ sin ( =(4 3⁄ ) �. 

This expectation is refuted by the fact that the ray which 

enters the telescope is already tilted by an angle � from its 

direction in the frame S in the direction of Earth’s velocity. 

Thus the incoming ray has a normal incidence on the 

telescope, which wouldn’t change if the telescope is filled 

with water. Like most physical observables, a ray’s direction 

is dependent on the frame in which the measurements are 

performed, and its outcome in s is true as much as is its 

outcome in S. 

The latter argument meets with Pauli’s who considers in 

his book “Relativity Theory” [19] the negative result of 

Airy’s experiment as self-evident when looked at from the 

rest frame of Earth s. In s, the received waves from the star 

should have normal incidence on the telescope which points 

to the apparent position of star. This fact persists even if the 

telescope is filled with water, and Airy Experiment is reduced 

to the clear fact that for a zero angle of incidence the 

refraction angle is also zero. 

6. Aberration Correction Vectors 

The vision direction (or apparent direction) is the 

momentary direction along which the star is seen from Earth. 

Being in the aberration plane, its unit vector � is a linear 

combination of the fixed direction �′ and the unit vector of 

Earth’s velocity, �k(5).  The aberration correction vector �(t) = �(t) − �′  is of length �  given by (12), lies in the 

aberration plane, and makes an acute angle with earth’s 

velocity ��k [13]. Being in the aberration plane, � is a linear 

combination of �′ and �k , and it can be expressed in the 

bases (���) of unit vectors of the frame � ≡ @[\] as follows: 

� = ��O + ��k =  (� cos Θ cos Φ − � sin b5)� 

+(� cos Θ sin Φ + � cos b5)� +  � sin Θ �,        (18) 

where we have used the expressions (9) and (10) for vectors 

of concern. A component of � along �O wouldn’t contribute to 

a change in its direction, and hence we may take the 

correction �  perpendicular to the star’s fixed direction �′ . 

The parameters �  and �  are thus determined by the 

conditions, � ⊥ �′ and |�| = � . Utilizing (13) we get after 

little calculations, 

� = (� *⁄ ) sin(b5 − Φ) cos Θ ,  � = (� *⁄ ),      (19) 

and hence 

�(5) = �* {[cos:Θ cos Φ sin(b5 − Φ) − sin b5]� 

+[cos:Θ sin Φ sin(b5 − Φ) + cos b5]� 

+ sin Θ cos Θ sin(b5 − Φ) �}.                 (20) 

The aberration vector � is what should be added to the 

direction �′ to obtain the vision direction �(5) = �(5) + �′ 
along which the star is seen in s. The vision direction A is 

normalized to the second order in �, for, �: = f: + 2 �. �′ +�: = 1 + �: = 1 + 0(�:).  In order to see the star, our 

telescope should point along the vision vector �(5) = �(5) +�′. 
It is to be noted that the star’s fixed direction �′  is 

specified from start by two vision vectors separated by half a 

year, 

�O = H: [�(5U) + �(5U + uJ�t��)]                (21) 

The longitudinal and latitudinal angles defined by this 

vector are the star S  ecliptic coordinates (Θ, Φ)  which we 

already started with. 

Special Earth’s Positions Relative to the Star: 

1. For a given star (Θ, Φ), Φ is a constant, and hence 

∆q ≡ ∆(b5 − Φ) = A ↔ ∆5 = A b⁄ = uJ\fQc.   (22) 

The symbol (↔) means the two statements are equivalent. 

Utilizing (22) we obtain from (20), 

�75 + uJ\fQc; = −�(5),               (23) 

which affirms that the aberration correction vector �  has 

opposite directions for locations on Earth’s orbit separated by 

half a year. 

2. In particular, for q = 0 Qmd q = A , or equivalently, b5H  = Φ and b5: = Φ + A, equation (20) yields 

�(q = 0 ) = C̀ (− sin Φ � + cos Φ �) = −�(q = A). (24) 

The normal to the plane Φ = constant is (− sin Φ , cos Φ , 0) = (−sinb5H, cosb5H, 0),     (25) 

which by (24) is along �(q = 0 ), and by (10) is the orbit’s 

tangent vector at the nearest position to the star S. Similar 

fact holds for the furthest location from S, and we deduce 

that at the nearest and furthest locations from S  the 

aberration correction vector is perpendicular to the aberration 

plane, and in particular, to the line of sight to S. Therefore, a 

telescope at either of these locations is tilted (horizontally) 

towards the Earth’s velocity by � = � *⁄ . 
3. For q = uJA and q = vJA we have 

� oH: Ap = C̀ [(−sin:Θ cos Φ , −sin:Θ sin Φ , sinΘ cosΘ) =−� o�: Ap                            (26) 

For 0 < Θ < H: A, the z-component would be positive for q = uJA  and negative for q = vJA , which means that the 

telescope should be tilted upward at the first location and 

downward at the second. If − H: A < Θ < 0,  the telescope 

should be tilted opposite to the z-axis at q = uJA and towards 

it at q = vJA, which correspond again for a telescope in the 
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southern ecliptic hemi- sphere to be tilted up and down 

respectively. 

7. Apparent Elliptic Trajectory 

In this section we prove that distant celestial objects 

appear to draw small elliptic trajectories, which is a well-

known observational fact. Utilizing b5 � �b5 1 Φ) + Φ, we 

write (6.3) in the form 

�(5) = �* [−sin:Θ cos Φ sin(b5 − Φ) 

+ cos(b5 − Φ) sin Φ]� 

+ �* [−sin:Θ sin Φ sin(b5 − Φ) − cos(b5 − Φ) cos Φ]� 

+ C̀ sin Θ cos Θ sin(b5 − Φ) �.                 (27) 

It is useful to decompose the aberration correction vector 

into a horizontal (east-west) and “vertical” (north-south) 

components, 

 � = �� + ��,                             (28) 

where 

�� = C̀ cos(b5 − Φ) ��,                  (29) 

�� = C̀ sin Θ sin(b5 − Φ) ��,            (30) 

and where �� and �� are the unit vectors 

�� = sin Φ � − cos Φ �,                   (31) 

�� = − sin Θ cos Φ � − sin Θ sin Φ � + cos Θ �.    (32) 

The vectors ��  and  ��  exist everywhere except at the 

ecliptic poles where Φ becomes undefined. The horizontal 

and vertical components change sinusoidally with the same 

frequency b  but with different amplitudes, (� *⁄ )  and (� *⁄ ) sin Θ respectively (we assume Θ ≥ 0); the horizontal 

component is A 2⁄  ahead in phase from the vertical one, so 

whenever one component attains an extremum the other 

vanishes.  
It can be checked that the triad of unit vectors {�′, ��, ��} 

is mutually orthogonal, and consequently so is the set {�′, �� , ��}; the horizontal and vertical correction vectors are 

both perpendicular to the direction of the incoming beam in S. 

From the parametric representation (29) and (30), the 

aberration correction vector displays the ellipse 

��J(` C⁄ )J + ��J(` C⁄ )J  ¡¢J £ = 1.                    (33) 

Likewise, the vision vector � = �′ + �  draws the same 

ellipse, and the observed star appears to follow a small 

elliptical trajectory in the celestial sphere with horizontal 

major axis of length � *⁄ , vertical minor axis of length (� *⁄ ) sin Θ, and center (Θ, Φ). 

Being free of the star’s longitude Φ, the ellipse (33) may 

refer to the apparent trajectory of any star of latitude Θ and 

arbitrary longitude. Indeed, under the assumption of a 

circular orbit for Earth, all trajectories with the same Θ may 

coincide on one another through rotations about Ez. The 

elliptic trajectories approach circles near the poles and 

horizontal straight segments near the ecliptic’s equator. 

8. Aberration in Graded Inertial Frames 

When S and s are equally inertial the star is seen in each 

frame when taken universal along the same direction �′ [13]. 

If S (s) is universal, which implies that the other frame is 

moving, the line of sight to the star in s (S) is tilted in the 

direction of the velocity of s relative to S, namely � , (S 

relative to s, namely – � ,) from �′ by the aberration angle � (−�), (Figure 3). 

The vision direction in the geocentric frame s is 

determined with reference to a fixed direction in the 

heliocentric frame S. It is known however that our sun 

revolves about the center of the galaxy [1] at about 8 times 

the earth’s orbital velocity and makes a full round in about 

230 million years (a galactic year). As observed from the sun, 

the aberration angles of an extragalactic object is given by an 

equation like (8) with v is replaced by 8v. Moreover, provided 

the sun’s motion is planar and approximately circular, the 

corresponding aberration correction vector would be given 

by equation like (27) in which v is replaced by 8v, b ≈2A cQd 230⁄  million years ≈ 2.73 × 10I¥cQd per year, Θ is 

the latitude of the extragalactic object with respect to the 

Sun’s plane of motion in the Galaxy, and Φ is its longitude 

relative to some starting point on the sun’s orbit. The vision 

vector of an extragalactic object traces during a galactic year 

an ellipse that is similar to (33) but 8 times larger in both 

dimensions. The vision vector �(5)  which points to the 

apparent position of the extragalactic object in the 

heliocentric frame S is practically fixed at a direction �U for 

thousands of years, and the annual aberration (observed from 

Earth) determines the apparent position of the extragalactic 

object relative to �U (symbolized earlier by �′). 
In reality no frame is exactly inertial, but there are graded 

inertial frames in which one frame is more inertial than 

another. For instance, the set of non-rotating frames with 

origins at the center of mass of, the galaxy (G), the solar 

system (S), the earth-moon system (s), an Earth’s satellite 

(sat), is graded in the sense that: the motion of S in G can be 

counted uniform for thousands of years, whereas the duration 

of uniformity of Earth’s motion in S ranges from minutes to 

hours depending on the required degree of accuracy, and 

finally the motion of sat in s is close to uniform only for 

seconds. The apparent position �′ of a distant celestial object S in the heliocentric frame S works, for hundreds of years, as 

a true fixed direction to which is referred the apparent 

position �g(5) of the same object S in the geocentric frame s. 

Moreover, the apparent position �g(5) in s can be considered 

for few hours in the neighborhood of any instant 5K  as a 

constant position �� = �g(5K) to which we refer the apparent 

position of S  in an Earth’s satellite. The deviation of the 

motion of a frame from uniformity during the period at which 

it is taken inertial is either undetectable, or its effect on the 

results of the experiment is negligible.  
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9. Observing Aberration from an Earth's 

Satellite 

We argue here that apparent positions of a celestial object 

as observed from Earth can be adopted as transient fixed 

positions when observing the same object from a satellite. 

Suppose that a satellite (a space station for instance) is 

orbiting the earth in a circular orbit without spin, and let Π be 

the plane of its motion in the geocentric frame s. We suppose 

that the satellite’s orbit is low so that the revolution period § 

is small enough to legitimate considering s during this period 

as inertial. During the orbital period § of the satellite, which 

is about 93 minutes for the international space station (ISS) 

the geocentric frame � , @[\]  is almost inertial, and the 

change in the apparent position of our distant star S is small 

�41"×93/365×24×60≈0.0072") ; its apparent position is 

almost fixed in s during half a period. It follows that at any 

chosen instant of time 5K there exists an approximately fixed 

direction �g(5K) =  �K  in s along which the star S  is seen 

during a short period of time |5 − 5K| ≤ § 2⁄ . 

Imagine that our satellite is stationary at some point of its 

orbit and a telescope is mounted there to observe the star S. 

The velocity of the telescope would be extremely close to the 

orbital velocity of Earth and it would have the same 

orientation of a telescope on Earth when pointing to the star S. I.e., the apparent position of S as seen from the satellite 

would be the same as its apparent current position �g(5K) = �K  from Earth. Now, the revolution of the satellite around 

Earth will add to �K a correction that depends on the velocity 

of revolution. The rest of this section is devoted to pursue the 

latter issue. 

The parallelism between aberration as seen from Earth and 

that seen from an Earth’s satellite is clear. The satellite 

replaces Earth, Earth replaces the Sun, the satellite’s plane of 

motion Π replaces the ecliptic, the pair (Θ, Φ) is replaced by 

the latitude and longitude (ΘO, Φ′) with respect to Π (and a 

direction �[′ in it), the geocentric frames s and a frame 

attached to the satellite that do not rotate relative to s, call it a 

“satcentric” frame �Q5 ≡ Q[O\O]O , replace the heliocentric 

and geocentric frames S and s respectively, and finally, the 

transient vision direction �� of the star in s replaces the fixed 

vision direction �O is S. 

The satcentric frame �Q5 ≡ Q[O\O]O may be duplicated by 

a copy that have parallel axes but with origin at Earth’s center, f�Q5 ≡ @[O\O]O . The axes of sat or esat are chosen as 

follows: @]O (Q]O) is perpendicular to the satellite’s plane of 

rotation Π, @[O (Q[O) is in the coordinate plane @[], i.e. the 

intersection of the planes Π, and @[], and @\O (Q\O) points 

to the direction that yields esat (sat) right-handed. The 

transformation from sat to s is implemented by means of an 

orthogonal matrix M with determinant +1 that embodies the 

given latter data. Straight forward calculations yield, 

� =
©
ª«

9HI¬JI­J9HI­J ¬­9HI­J ®
0 −91 − ¯: ¯

I¬9HI­J ­9HI¬JI­J9HI­J 91 − ®: − ¯:°
±².       (34) 

The entries of the third column are the components of the 

unit normal to the plane Π, which is the unit vector �′ of the 

axis ]′, in the system @[\]: 
� ´001µ = ¶ ®̄

91 − ®: − ¯:· ≡ ´cos ¸ cos ¹cos ¸ sin ¹sin ¸ µ.     (35) 

In the third column, (¸, ¹) are the latitude and longitude 

angles of �′ in the geocentric ecliptic system @[\]. In terms 

of (¸, ¹) the matrix (34) can be written in the form 

� =
©
ª«

 ¡¢ ~9HIº» J ~  ¡¢J ¼ º» J ~ º»  ¼  ¡¢ ¼9HIº» J ~  ¡¢J ¼ cos ¸ cos ¹
0 −91 − cos: ¸ sin: ¹ cos ¸ sin ¹I º»  ~ º»  ¼9HIº» J ~  ¡¢J ¼ º»  ~  ¡¢ ~  ¡¢ ¼9HIº» J ~  ¡¢J ¼ sin ¸ °

±²(36)  

Another way of writing the latter matrix utilizes the 

equality 

 ¡¢ ~9HIº» J ~  ¡¢J ¼ = H9HGº»½J ~ CDEJ¼.              (37) 

The transformation from s to sat is carried out by means of 

the transpose matrix �a. If A is a vector in s, its expression in 

the frame esat or in sat, will be �a�. 
Since our concern is confined to directions, which are 

vectors, the transformation between s and esat or the 

satcentric frame sat, is governed by the matrix M and do not 

involve the displacement vector 

g¾ = ℎ(cos b′5 �O + sin bO5 �O),               (38) 

in which h is the distance between the satellite and Earth’s 

centre and b′is the angular velocity of the satellite in s. 

We iterate that the vectors 

�g(5K) = �K  (l = 1, 2, 3, … , 5KGH = 5K + §)       (39) 

in s are all transient and each works as a fixed direction in sat 

only for the period |5 − 5K| ≤ § 2⁄ . The matrix �atransforms 

the latter set of vectors to the set of vectors 

�a�K  (l = 1, 2, 3, … , 5KGH = 5K + §)            (40) 

in sat. The angles (ΘO, Φ′) of the star S, with respect to Π and 

the [′ -axis in it, are either directly measured, or calculated 

through the transform �a�  of the vector �.  The vision’s 

direction to S from the satellite is the sum of �a�K and the 

aberration correction vector �O . Setting 5O = 5 − 5U,  where 5Uis the instant marking a passage of the satellite from @[′(i.e. 

from the plane @[]), which is also the passage of Q[′ from 

Earth’s center, we get in sat, in parallel to the formulas for �(5) in s, �O(5′) = ��O (5′) + ��O (5′), where  

��O (5′) = (�′ *⁄ ) *��(b′5′ − Á′) �ÂO ,             (41) 

��O (5′) = (�′ *⁄ ) sin Θ′ sin(b′5′ − Φ′) ��O ,         (42) 

and where ��O  and ��O  are the unit vectors 

��O  = �lm Φ′ �′ − *�� ΦO �′                  (43) 



 American Journal of Astronomy and Astrophysics 2021; 9(3): 22-31 30 

 

��
O � 1 sin Θ′ cos Φ′ �′ − sin ΘO sin ΦO �′ + cos Θ ′�′. (44) 

In (41) and (42), bO = 2A §⁄  is the angular velocity of the 

satellite (�O = ℎb′ is its orbital velocity). The instantaneous 

vision direction ��O from our satellite to S in its i
th

 round is 

�KO = �a�K + �′                           (45) 

Note that the correction vector, which is periodic in time 

with a period §, is the same in all rounds; it is independent of 

i. The telescope in sat should point in the direction �KO  in 

order to see the star S. 
The aberration angle, which is the angle between the vision 

direction �KO and the temporarily fixed direction �a�K , is given by 

sin �O = `Ã
C sin (O(5′),                     (46) 

where, 

(O(5′) = ∠(�a�K, �O(5′)) = ∠(�K , ��O(5′))      (47) 

is the angle between the star’s vision direction and the 

satellite’s velocity at an instant 5′. In esat 

�O(5′) = �O�kO = �O(− sin bO5′ �O + cos bO5′ �O)    (48) 

where �kO  is the unit tangent vector to the satellite’s orbit and �Ois its constant velocity magnitude. 

In parallel to (13) we may derive from (46), 

�′ ≈ sin �′ = `OC 91 −  *��:ΘOsin:q′          (49) 

where qO = bO5′ − ΦO.  When half a period elapses the 

velocity of the satellite reverses direction, and with it the 

aberration angle, resulting in an angle 2�′  between the 

corresponding two lines of sight from the satellite to S. The 

aberration angle takes its maximum ����O ≈ �′ *⁄  (the 

aberration constant in the satellite) for qO = 0, A, 2A, … and 

its minimum �E�KLO = (�′ *⁄ ) sin Θ′ for qO = uJA, �: A, Ä: A ….. 
The star S is observed in sat to follow during a period § 

the apparent elliptic path 

7�ÅÃ ;J
(`Ã C⁄ )J + 7��Ã ;J

(`Ã C⁄ )J  ¡¢J £Ã = 1                 (50) 

with a major horizontal and minor vertical axes of lengths �′ *⁄  and (�O *⁄ ) sin Θ′ respectively. It is clear for a telescope 

in the satellite pointing to the star S, that the word “vertical” 

corresponds to tilting along Q]′ while “horizontal” to tilting 

perpendicularly to Q]′ and to the line of sight QS. 

The relation between the aberration constants in Earth and 

in a satellite is 

sO s⁄ = �′ �⁄ .                            (51) 

For a satellite, like ISS, whose speed is 7.66 km/sec our 

theory predicts the result 

sO = s Æ.ÇÇ:È.Æ¥ ≈ 20.4894" × 0.2572 ≈ 5.2702",       (52) 

which is to be compared with experiment. 

Satellites Connective Matrices 

The transformation matrix between two satellites �Q5H and �Q5: revolving about Earth in circular orbits in the planes ΠH 

and Π:  respectively is called the connective matrix and 

denoted by �H:; it is obtained as follows. Let 

�H = (cos Ḩ cos ¹H , cos Ḩ sin ¹H , sin Ḩ)a          (53) 

�: = (cos ¸: cos ¹: , cos ¸: sin ¹: , sin ¸:)a          (54) 

be the unit normals to the planes ΠH and Π:respectively, and 

denote the transformation matrices from �Q5H  and �Q5:  to s 

by �H( Ḩ, ¹H) and �:(¸:, ¹:) respectively. It is evident that 

the transformation matrix from the satellite �Q5H  to the 

satellite �Q5: is 

�H:( Ḩ, ¹H; ¸:, ¹:) = �:a(¸:, ¹:)�H( Ḩ, ¹H).         (55) 

The transformations from �Q5: to �Q5H are carried out by the 

matrix �:H = �H:IH = �Ha�:. Earth may be given the index (0) 

and the connective matrix from a satellite �Q5K  to Earth is �KU = �K . 
Connective matrices make all geometric information 

regarding the celestial sphere which are obtained in one 

satellite immediately available to observers on Earth and in all 

other satellites. For instance, if the current vision position of a 

distant star S in �Q5H  is É′HÊ , then its apparent position from 

Earth is �H(É′HÊ − �H) and its apparent position in �Q5: is  

�:a�H7ÉOHÊ − �H; + �: = �H:7ÉOHÊ − �H; + �:,  (56) 

where �Hand �:  are the correction vectors in �Q5H  and �Q5: 

respectively. 

Finally, it is worth it to mention that we could have 

handled aberration in a satellite through referring its motion 

to the ecliptic heliocentric frame S. 

10. Conclusion 

The TUST theory provides a neat explanation of the stellar 

aberration phenomenon that highlights its independence of the 

light’s source velocity, and provides a formula for the aberration 

angle at each instant of the year. The introduction of the 

aberration correction vector enables us to find an approximate 

formula for the apparent position of any celestial object at any 

instant of time. The introduced concept of graded inertial frames 

makes it understood why annual stellar aberration depends, to a 

great degree of accuracy, only on the velocity of Earth relative to 

the heliocentric frame, and legitimizes the approximate 

treatment of aberration when observed from a satellite in parallel 

with its treatment when observed from Earth. The derived 

satellites connective matrices publicize any geometric 

measurement regarding the distant celestial sphere that is 

obtained in one satellite to observers on Earth and in all satellites. 
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