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Abstract: In this paper, we have presented two anisotropic cosmological models, of which the former being T-model is 

homogeneous and the latter being non T-model is inhomogeneous. We have constructed formula for all the physical and 

kinematical quantities and established relations among them. Equations of state are constructed. Both these solutions can be 

applied to all the epochs of the universe for which  � � �0,1� 	 
1/2
, where the quantity � is a MacCallum parameter and 

describes the anisotropy of the 4-dimensional space-time. It is explicitly shown that the T-model presented here is more 

general solution in the sense that it includes the one given by McVitte and Wilt-shire. 
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1. Introduction 

It is well known that the Friedmann-Robertson-Walker 

(F-R-W) cosmological models, derived on the twin 

assumptions of spatial isotropy and homogeneity, provided 

a satisfactory description of the observable universe for a 

considerable part of its entire history. However, the 

existence of inhomogeneities in the form of galaxies and 

clusters as well as the observed anisotropy in the spectrum 

of the cosmic background radiation could not be explained 

with the help of F-R-W models. Cosmological models with 

inhomogeneous density have been studied by [1, 2, 3, 4] 

and others. These models as well as the models given in [5] 

provide certain generalizations of the F-R-W models. The 

Tolman, Bondi as well as Kantowski and Sachs models are 

anisotropic. 

In order to associate a cosmological model to certain 

epoch of the universe, one has to compare the strength of 

the free gravitational field   �  with that of the matter 

field  �. The strong relativistic cases are ε � � in general 

and ε � 2ρ in particular. The expression defined by [6] in 

terms of shear tensor  ��
� and expansion � of the material 

time-like congruence works as a supplement to penrose’s 

hypothesis and that a physically meaningful cosmological 

model should evolve in such a way that the quantity � starts 

from 0 at the “big bang” and ends up with 1 in the “black 

hole” (viz. big crunch). Inhomogeneous Kantowski-Sacs 

type cosmological models with � � 0 have been studied in 

[7]. Spherically symmetric cosmological models with 

� � 1 (highly chaotic state) have been investigated by [8]. 

Shearing T-models with � � 1 2⁄  have been studied in [9] 

 and shown that the pressure isotropy  �� � �� implies 

 ε � 2ρ  and vice versa. Cosmological solutions, other than 

t-models, with  � � 1 2⁄  and with non-vanishing conformal 

Weyl tensor are studied in [10] and shown that shear does 

not vanish. The existence of Event and Particle horizons in 

these models has been studied by [11, 12] and given the 

graphical representations. In the present paper we present 

two cosmological solutions which are applicable to all 

epochs of the universe for which   � � �0,1� 	 
1/2
.  

2. Spherically Symmetric Material 

Distribution 

It is well known that the geometry of the most general 

spherically symmetric space-time is described by the metric  

�� � 	 exp$%� �& 	 ' $�� ( sin ,� ( exp$-� �.    (1) 

where  %, ' and - are functions of r and t only. Further, ' 

and r are called respectively the Eulerian (or positive) and 

Lagrangian (or labeling) coordinates; i.e. '$&, 0� � &. We 

now assume that the matter filling the space-time given by 

the metric (1) is an anisotropic fluid, as [13] 

/�
� � $� ( ��� 0�0� 	  �� 1�

� ( $�� 	 ��� 2�2�     (2) 
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where  ��  and ��  being respectively radial and transverse 

fluid pressures and  

0� � $0, 0, 0, exp$	 - 2⁄ ��, 0�0� � 1,          (3) 

2� � $exp$	 % 2⁄ �, 0, 0, 0�, 2�2� � 1,          (4) 

The Einstein field equations 

	84/�
� � '�

� 	 $1 2⁄ � ' 1�
� (5 1�

�              (5) 

after using (1) to (4) in (5), gives the following: 

84/6
6 ( 5� 	84 �� ( 5 � 	�1 ' 78�$%�⁄ 9 :;'< '⁄ = ( '<-<> ( �1 ' 78�$-�⁄ 9:2'? ( ;'@  '⁄ = 	 '@ -@ > ( �1 ' ⁄ 9     (6) 

84/ 
 ( 5� 84/A

A ( 5� 	84�� ( 5� 84ε 	 �1 ' 78�$%�⁄ 9:2'<< 	 ;'< '⁄ = 	 '<%< ( '<-<> ( �1 ' 78�$-�⁄ 9:2'? 	 ;'@  '⁄ = ( '@ %@ 	 '@ -@ > 	 �1 ' ⁄ 9   (7) 

84/B
B ( 5� 84� ( 5� 	�1 ' 78�$%�⁄ 9:2'<< ( ;'< '⁄ = 	 '<%<> ( �1 ' 78�$-�⁄ 9:;'@  '⁄ = ( '@ %@> ( �1 ' ⁄ 9       (8) 

84/B
6 � 0 � �1 ' 78�$%�⁄ 9 :2'@ < 	 '<%@ 	 '@ -<>                                                   (9) 

84C � exp$	%� :$'<< '⁄ � 	  $'< '⁄ � 	 $-<< 2⁄ � 	 ;-< 4⁄ = 	 $'<%< 2'⁄ � ( $'<-< 2'⁄ � ( $%<-< 4⁄ �> ( exp$	-� E;%? 2⁄ = (
;%@ 4⁄ = 	 ;'? '⁄ = ( ;'@ '⁄ = 	 ;'@ %@ 2'⁄ = ( ;'@ -@ 2'⁄ = 	 ;%@-@ 4⁄ => ( $1 ' ⁄ �                       (10) 

Here C is the eigenvalue of the conformal Weyl tensor in 

Petrov’s classification [14]. Here and in what follows a 

prime and an overhead dot for  % ,  ' and  -  denote 

respectively a differentiation with respect to  &  and   . . 

Since, the eigenvalue  C is always coupled with the material 

energy density �, the former is interpreted as the “energy 

density of the free gravitational field” and its presence is 

related with both anisotropy and inhomogeneity [15-20].  

The necessary and sufficient condition for conformal 

flatness of the space-time (1) is   C � 0 . Using the 

directional derivatives  FG  � 78�$	- 2⁄ � $H H.⁄ �  and F�  � 

78�$	% 2⁄ �  $H H&⁄ �  along the radial and transverse 

directions respectively,  Γ  and  J are defined as  

Γ � F� ' �  '< exp$% 2⁄ �⁄                     (11) 

J � 0�$H' H8�⁄ � � FG' � '@ exp$- 2⁄ �⁄         (12) 

The combination 
$6� ( $8� 	 $7�
  gives 

7MN'< � Γ � 1 ( J 	 $84 3⁄ �;� ( C ( �� 	 �� ( $Λ 84⁄ �= '                                      (13) 

We now directly write down the equations which govern the evolution of the system as below [13]: 

FG$% 2⁄ � � HJ H'⁄                                                                                     (14) 

FGΓ � J F�$- 2⁄ �                                                                                       (15) 

FG$Q' � � 	Q'  $HJ H'⁄ �                                                                        (16) 

FGJ � $1 2⁄ � Γ $HJ H'⁄ � 	  $44 3⁄ ��� ( C ( �� ( 2�� 	 $Λ 44⁄ �9 '                                            (17) 

FG
$44 3⁄ ��� ( C ( �� 	 �� ( $Λ 84⁄ �9 'A
 � 	;�� 	 $Λ 84⁄ �=  FG�$44 3⁄ �'A9                           (18) 

F�
$44 3⁄ ��� ( C ( �� 	 �� ( $Λ 84⁄ �9 'A
 � $� ( F��$44 3⁄ �'A9�  F��$44 3⁄ �'A9                     (19) 

$� ( ��� F�$- 2⁄ � � 	F���� 	 $Λ 84⁄ �9 ( $�� 	 ��� F�
ln�' 78�$- 2⁄ �9
                             (20) 

where n denotes the baryon number density and we have 

written  H H'⁄ � $'<�M6 $H H&⁄ �. 

We may mention here that the energy density of the free 

gravitational field which is coupled always to the material 

energy density as well as the cosmological constant plays a 

significant role in describing truly relativistic situation. We 

have taken, for simplicity, the coupling constant as unity. 

However, in order to raise the contribution of 

  C  substantially relative to  � , we could have chosen the 

coupling constant to desired levels. 

3. Kinematics of Spherically Symmetric 

Models 

Spherically symmetric solutions can be classified 

according to their kinematical properties. The assumption 

of spherically symmetry implies that rotation   S�� �
0  and hence the fluid velocity field must be hyper surface 

orthogonal. From (1) and (3) we get the expressions for the 

remaining kinematical quantities, viz. acceleration   0@ � , 

components of the shear tensor   ��
� , shear invariant 

 �  defined by  � � $3 2⁄ � ��
� ��

�  , and expansion  �  of 

the time-like congruence  0� , as below: 

  0@ � � �exp$	% 2⁄ �9  $-< 2⁄ �        (21) 

$1 2⁄ � �6
6 � 	� 

 � 	�A
A � $1 3⁄ � �exp$	- 2⁄ �9 :;%@ 2⁄ = 	 ;'@ '⁄ =>   (22) 
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� � �exp$	- 2⁄ �9  :;%@ 2⁄ = 	 ;'@ '⁄ =>                  (23) 

� � � ( 3 ;'@ '⁄ =                          (24) 

With the help of these expressions, MacCallum (1982) 

defined the quantity   �  which describe the anisotropy in 

the space-time as  � �  |3��
� ��

� 2� ⁄ |6  ⁄   and that, in our 

present case, reduces to 

� � U  :;%@ 2⁄ = 	 ;'@ '⁄ => :;%@ 2⁄ = ( ;2 '@ '⁄ =>V   U � | � � ⁄ |  

or equivalently it can be written as [13]  

$1 W ��;%@ 2⁄ = � $1 X 2�� ;'@ '⁄ =               (25) 

Similarly, the Raychaudhuri [21] equation can be 

rewritten as 

�@ � 	$1 3⁄ �� 	 $2 3⁄ �� 	 44$� ( �� ( 2��� ( Λ  (26) 

We now introduce a cosmological T-model and derive 

evolution equations and expressions for the kinematical 

quantities in the next section. Further we show that this 

solution is more general in the sense that it includes the one 

given by McVitte and Wilt-shire. 

4. Cosmological T – Models 

In this section we study T-models. On putting   '< � 0 , 
the metric (1) reduces to 

�� � 	 exp$%� �& 	 ' $.� $�� ( sin ,� ( exp$-� �.   (27) 

where   '  is the function of  .  only while   %  and 

  -  remain to be the functions of   &  and  ..  

The space-time described by (27) is an inhomogeneous 

perturbation of the Kantowski – Sachs [5] metric (1), and is 

spherically symmetric but does not contain the centers of 

symmetry in the hyper-surface   . � YZQ�.[Q. . The models 

described by (27) are called “T-models” in the Russian 

literature [22-25] for which the standard Schwarzschild 

coordinates viz.  '$&, 0� � & , do not exist. For the space-

time metric (27) the Einstein’s field equation (9) takes the 

form   '@ -< � 0 , and that leads us to consider 

-$&, .� � 0and '@ \ 0                       (28) 

Other cases were discussed in the literature [7-10]. Now 

on integrating (25), we get 

% 2⁄ � �$1 X �� $1 W ��⁄ 9 log '$.�          (29) 

Thus, on using (28) and (29), the metric (27) takes the 

form 

�� � 	' _$.� �& 	 ' $.� $�� ( sin ,� ( �.     (30) 

where Q � �$1 X 2�� $1 W ��⁄ 9. 
The expressions for the physical and kinematical 

quantities, for the space-time metric (30), take the 

following form: 

84 �� 	 Λ � 	2;'? '⁄ = 	 ;'@ '⁄ = 	 $1 ' ⁄ �       (31) 

84 �� 	 Λ � 	84C 	 2;'? '⁄ = 	 $2Q 	 1�;'@ '⁄ = ( $1 ' ⁄ �  (32) 

84� ( Λ � $2Q ( 1�;'@ '⁄ = ( $1 ' ⁄ �            (33) 

84C � $Q 	 1�;'? '⁄ = (  $Q 	 1� ;'@ '⁄ = (  $1 ' ⁄ �   (34) 

� � $Q 	 1�;'@ '⁄ =                              (35) 

� � � ( 3;'@ '⁄ = � $Q ( 2�;'@ '⁄ =                         (36) 

Here we computed the relationship among  �� ,  �� ,  �  
and   C  and the resultant ‘equation of state’ is given by 

$2Q ( 1� C �  $Q 	 1� �� ( $Λ 24⁄ �9 	 $Q ( 2� �� 	 $2Q 	 5� ��      (37) 

Further, we note that the metric (30) reduces to McVitte 

and Wilt-Shire [26] solution when  '$.� � . . 

5. General Cosmological Models 

In this section we study general models with  � a �0,1� 	

1 2⁄ 
. Thus, on integrating (25) we get $% 2⁄ � � Q log ' 	
 $1 2⁄ � log�1 ( b $&�9  where  Q � �$1 X 2�� $1 W ��⁄ 9 , 

and  b$&�  is an arbitrary function. Also using (25) in (9), 

we get   $- 2⁄ � �  log '@ 	  Q log ' . In view of these 

expressions for  %  and  - , the space-time metric (1) reduces 

to 

�� � 	
' _ �1 	 b $&�9⁄ 
 �& 	 ' $�� ( sin ,� ( ;'@ '⁄ = �.                                 (38) 

For (38), the expressions for    ��  , �� , � , C ,  [  ,  �  and  � are given below: 

84 �� 	 Λ � �'<$1 ( b � ' _c6⁄ 9 :;2'@ < '@⁄ = 	 $2Q 	 1�$'< '⁄ �> 	 $2Q ( 1�' _M 	 $1 ' ⁄ �     (39) 

84 �� 	 Λ � 	84C ( �'<$1 ( b � ' _c6⁄ 9$2'<< '<⁄ � ( ;2'@ < '@⁄ = 	 $4Q 	 1�$'< '⁄ � ( 2�bb< $1 ( b �⁄ 9 	 $4Q 	 1�' _M ( $1 ' ⁄ �   (40) 

84� ( Λ � 	�'<$1 ( b � ' _c6⁄ 9 
$2'<< '<⁄ � 	 $2Q 	 1�$'< '⁄ � ( 2�bb< $1 ( b �⁄ 9
 (  $2Q ( 1�' _M ( $1 ' ⁄ �   (41) 

84C � $Q ( 1��'<$1 ( b � ' _c6⁄ 9  
$'<< '<⁄ � 	 $2Q ( 1�$'< '⁄ � ( �bb< $1 ( b �⁄ 9
 ( $2Q 	 1�$Q 	 1�' _M 	
:'@ <$1 ( b � ' _ '@⁄ > d;'@ << '@ <⁄ = 	 $3Q ( 1�$'< '⁄ � ( �bb< $1 ( b �⁄ 9e ( $1 ' ⁄ �                               (42) 

[ � ;f1 ( b '<⁄ = :;'@ < '@⁄ = 	 Q;'@ '⁄ =>                                                        (43) 

� � $Q 	 1� '_M6                                                                             (44) 
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� � � ( 3 '_M6 � $Q ( 2� '_M6                                                                (45) 

Assuming that the function   '$&, .� is separated in its arguments, we can write without loss of generality '$&, .� �
& 1$.�,   1$0� � 1 . So that (25) gives $% 2⁄ � � Q log 1$.� 	  $1 2⁄ � log�1 ( b $&�9 and using this  $% 2⁄ �  in (9) we get, 
$- 2⁄ � � $1 	 Q� log ' . Hence, in view of these expressions for  %  and  -  , the space-time metric (1) reduces to 

�� � 	
1 _ �1 	 b $&�9⁄ 
 �& 	 &  1 $.� $�� ( sin ,� (  & M _ �.                                  46)

For (46), the expressions for    ��  , �� , � , C ,  [  ,  �  and  � are computed and given below: 

84 �� 	 Λ � 	�$1 ( b � 1 _⁄ 9 �$2Q 	 3� & ⁄ 9 	 & _M �$21? 1⁄ � ( $1@ 1⁄ � 9 	 $1 &1⁄ �                      (47) 

84 �� 	 Λ � 	84C ( �$1 ( b � 1 _⁄ 9 
�$1 	 2Q� & ⁄ 9 ( �2bb< &$1 ( b �⁄ 9
  	 & _M  �$21? 1⁄ � ( $2Q 	 1�$1@ 1⁄ � 9 ( $1 &1⁄ �   (48) 

84� ( Λ � 	�$1 ( b � 1 _⁄ 9 
�1 & ⁄ 9 ( �2bb< &$1 ( b �⁄ 9
 ( & _M $2Q ( 1�$1@ 1⁄ �  ( $1 &1⁄ �                (49) 

84C � 	�$1 ( b � 1 _⁄ 9 
�Q & ⁄ 9 	 �Qbb< &$1 ( b �⁄ 9
 ( & _M  �$Q 	 1�$1? 1⁄ � ( $Q 	 1� $1@ 1⁄ � 9 ( $1 &1⁄ �       (50) 

 [ � ;f1 ( b 1 _V =6  ⁄  �$1 	 Q� &⁄ 9                                                                 (51) 

� � $Q 	 1� &_M6  $1@ 1⁄ �                                                                             (52) 

� � � ( 3 &_M6$1@ 1⁄ � � $Q ( 2� &_M6 $1@ 1⁄ �                                                       (5 

 

6. Conclusions 

We have constructed two cosmological solutions to 

Einstein’s field equations. The first one is a T-model and 

the other is a general model other than T-model. 

Expressions for the physical quantities    ��  , �� , �  , and  C  
are given and the relations, i.e., equations of state, were 

found. Both the solutions can be applied to all epochs of the 

universe for which  � a �0,1� 	 
1 2⁄ 
  , where the quantity 

  �   described the anisotropy of the 4-dimensional space-

time. The T-model presented here is more general solution 

in the sense that it includes the solution given by McVitte 

and wilt-shire.  
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