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Abstract: Machinists and Metrologists are most often called to take decisions for least machining to achieve specific surface 
qualities of mechanical organs used in aeronautics and other severe environments. The highest challenge they face is in 
decision-making about the surface finish related to the cutting conditions, the tool life, and the machined material. This paper 
proposes a method of remote measurement and prediction of the surface roughness on turned and milled carbon steels with 
high-speed steel and tungsten carbide tools, based on the image acquisition protocol, material content and tool life. The remote 
measurement of the surface roughness involved a point-to-point viewing angle to capture the image surfaces to appreciate the 
ideal angle of optimal optical measurement. The assessment of the optical roughness involved the line profiling calculation 
method on the locally corrected pixels’ values before the areal integration. The optical roughness values were regressed on the 
reference values and the precision of the method was assessed. The angles of 60°, 75°, and 120° show the effectiveness of the 
measurement method with precision attaining 83%. For the roughness prediction in the milling and turning operations with 
high-speed steel and tungsten carbide tools, the fuzzy logic and artificial neural networks techniques are compared considering 
the cutting conditions as fixed, the carbon percentage and the tool life, all as inputs. With an overall measurement precision 
above 90% and very low mean square errors, the qualifiedness of the predictive methods is underlined.  
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1. Introduction 

More than a necessity, the surface becomes indispensable 
in almost all sectors of the industry [1-3]. Surfaces guarantee 
the functions of leak tightness, adhesion, solidity, resistance 
to wear, and corrosion, and therefore require specific 
attention during machining operations. More than twenty (20) 
factors divided into machine parameters, cutting phenomena, 
properties of workpiece and cutting tool, contribute to the 
surface finish [4]. And, coupled with productivity and 
efficiency reasons, the surface roughness accordingly must 
be mastered in terms of measurement and prediction. With 
regard to the high performances awaited from the machined 

parts in relation to their function in aggressive or precise 
environments [5], together with the great number of 
parameters defining the surface finish, important decisions 
have to be taken for the fast and accurate measurement and 
material selection. Thus, the remote measurement of the 
surface roughness parameters and the development of 
decisive predictive techniques become the essence of this 
mastery [6]. 

For decades now, the measurement of roughness 
parameters with the contact line profiling method remains the 
most widespread technique [1, 7-9] despite its limitations in 
terms of poor rendering of the effective surface information 
[1, 9-11]. This limitation is imposing the authors to remotely 
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assess the roughness parameters by regressing the areal 
optical roughness values on the contact line profiling values 
considered as reference [9, 12]. Furthermore, the remote 
estimation of roughness parameters implies some major 
aspects in the technology and acquisition systems of the 
optical evaluation techniques. When computing the optical 
roughness, very few authors put an emphasis on the 
acquisition protocol related to the focal distance, acquisition 
angle, light intensity, etc. [12-14]. In order to facilitate the 
introduction of optical techniques to the metrologists, more 
information needs to be given about the settings of the optical 
device for image acquisition of surfaces prior to the optical 
roughness calculation or the introduction of the images to the 
related softwares. 

Two major directions organize the optical roughness 
calculation: the statistical distribution of the pixels’ values on 
the grayscale and colour images [12, 13, 15, 16] and the 
estimation functions of surface texture parameters [8, 17-19]. 
In the first direction in respect to investigating the statistical 
distribution of light intensity over the image, Manjunatha et 
al. (2017) [16] calculated the roughness parameters by 
regressing on the roughness tester values, the standard 
deviation, and the root mean square of the pixels’ values from 
the grayscale images. Standard deviation represents the 
predominant parameter regarding its correlation value. Liu 
Jian et al. (2017) [12] measured surface roughness with the 
color distribution statistical matrix (CDSM). The method 
deployed an analysis of the roughness correlation with the 
brightness variation of the red-green light on the 2D and 3D 
images related to their orientation on the ground specimens. 
The results presented a strong interrelation between 
roughness and brightness when the red-green light sources 
are vertically aligned and there was an emphasis on the 
placement of the machined surface signatures (striae). 

The second direction apropos of texture parameters 
algorithms, Anayet et al. (2011) [8] generated the surface 
topography from the images acquired on the surface of rubert 

visotactile rugotests. A correlation factor of 0.96 permitted to 
validate the approach. Kamguem et al. (2013) [13] 
constructed the correlation function between the roughness 
tester values and the grey level, the average cycle, and the 
gradient factor of the images at 50x, 100x, and 150x 
magnifications. The highest correlation factor is established 
from the 50x magnification and the average cycle of the 
texture. Mateos et al. (2014) [20] designed a topographical 
reference of TESA rugotests and then determined the 
amplitude of the specimens prior to their correlation with the 
said reference. The results suggested the non-exploitation of 
RC and 2RC filters for the roughness tester. 

The mastery of the surface finish through prediction 
techniques involves supervised learning methods with the 
roughness values from the reference measurement (using the 
roughness tester) to appreciate the deviation of the predicted 
values. In most cases, the prediction exercise reveals the 
cutting conditions as the most used inputs, all techniques 
considered. Few techniques can therefore be highlighted: 
fuzzy logic [3, 21-26], the artificial neural networks [27-30], 

the response surface methodology [5, 22, 26, 31], the genetic 
algorithms [31, 32] and the hybrid methods, namely, ANFIS, 
GA-ANN, GA-Fuzzy, and so on [32-34]. Furthermore, an 
emphasis on noteworthy predictive techniques of surface 
roughness puts the fuzzy logic and artificial neural networks 
at the pole position [22, 35]. 

In the fuzzy logic setting, together with the cutting 
conditions as input, some authors added the cutting fluid and 
the cutting tool’s conditions. Kuram et al. (2013) [22] studied 
the roughness behavior with the use of rotational speed, feed, 
depth of cut, and two vegetable-based cutting fluids (one and 
two surfactants) as inputs on a drilled AISI 300 with HSS 
tool. The Taguchi’s L9 orthogonal array contributed to design 
the fuzzy logic system whose prediction results were 
compared to those of the regression method. Fuzzy logic 
technique showed a major correlation with the input factors, 
all cutting fluids considered. Kovac et al. (2013) [23] applied 
fuzzy logic for the prediction of the surface finish in milling 
AISI 1060. The Mamdani inference system was implemented 
taking cutting speed, feed, depth of cut, and flank wear as 
inputs. The membership function used the Gaussian model 
over thirty (30) experiences and the defuzzyfication was 
carried out on the centroid of the area. The results portrayed a 
precision of 94%. Tzu-Liang et al. (2016) [26] established a 
new method for surface finish prediction with fuzzy set 
theory on milling specimens. The design of experiments 
technique contributed to classify the overriding factors 
among feed rate, cutting speed, depth of cut, nose radius, and 
cutting fluid. The fuzzy models designed with the first three 
factors generated a system with 95% of precision. Ngerntong 
et al. (2020) [36] predicted the surface roughness of 7075-T6 
aluminum with its chip morphology in milling, using fuzzy 
logic. The Mamdani inference system was built around the 
continuation chip, the deformation chip, and the thickness 
chip organized in twenty (20) levels each for four (04) ranges 
of qualitative decision per input. The fuzzy logic technique is 
concluded as accurate and reliable for the surface finish 
prediction. 

In the non-conventional machining, the fuzzy logic 
technique engages the cutting conditions as input with other 
intrinsic machining conditions. Kanish et al. (2014) [37] 
developed a fuzzy model to predict the improvement of the 
surface finish in magnetic field abrasion. The voltage, the 
machining gap, the rotational speed of the electromagnet, and 
the abrasive size were taken as inputs for the Mamdani 
inference system. Nine (09) rules helped in fuzzifying the 
system and the centroid of area was used for defuzzification. 
A precision of 94.6% was recorded in validating the method. 
Abhinav et al. (2015) [24] predicted the surface finish in 
electrochemical machining processes. Mamdani inference 
system of fuzzy model was used through eight (08) 
experiences taking voltage, feed, and concentration as inputs. 
A precision of 92.66% was recorded for the approach. 

With reference to the other most used predictive technique, 
artificial neural networks, Vishal et al. (2008) [26] developed 
a neural network method to predict surface roughness with 
the help of the approaching angle, feed, and depth of cut. The 
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back-propagation training algorithm was deployed for 
processing the input values of the calculated number of 
neurons and epochs. With 76.4% of accuracy, the model 
presents the weakness of roughness prediction with 
approaching angle, speed, and depth of cut and its strength 
with the feed rate. Vrabel et al. (2012) [28] predicted surface 
finish in drilling Udimet 720. The chosen input parameters 
were cutting speed, feed, thrust force, and tool flank wear. 
Five hidden layers employed the sigmoid function as the 
activation function. The method achieved 87.3% of precision. 
Rajesh et al. (2014) [38] employed the artificial neural 
network to predict the surface finish with the help of speed, 
depth of cut, feed rate, and stepover. The sigmoid function as 
the transfer function and the backpropagation algorithm 
contributed to build and train the system. The performance of 
the method was assessed with sixteen (16) experiences for 
training and seven (07) for evaluation. A precision of 93.58% 
was attained in those conditions. 

Kuldip et al. (2015) [34] engaged Levenberg-Marquardt 
algorithm to train the system to predict the surface roughness 
in turning operation from a database already built. The 
cutting speed, feed, and depth of cut were the input factors 
selected to construct the neural networks predictive function. 
The mean absolute percentage error over the twenty-seven 
(27) experiences used for the prediction was 1.7%. Vasanth et 
al. (2020) [30] predicted the surface roughness of the 
hardened SS410 steel in turning operation. The cutting force, 
tool wear and vibration, speed, depth of cut, and feed were 
taken as inputs. The sigmoidal function was used to train the 
6-1-4-3-1 neural network and helped to adjust the weights of 
the inputs to minimize the root mean square error (RMSE). 
With three new inputs (cutting force, tool wear, and tool 
vibration), they recorded precisions above 96% related to the 
various combinations and subtractions of some inputs. 

In sum, the measurement of surface roughness with remote 
techniques is barely not presented as associated with the 
acquisition angle of the image capture and the assessment of 

the optical roughness is not built around the mathematical 
principle used in obtaining values from the roughness tester 
(reference values). Likewise, concerning the prediction 
techniques, three to four common factors are engaged in 
forecasting the surface finish, over the minimum of twenty 
factors so far recorded. 

To address the aforesaid aspects in measurement and 
prediction, this study aims at assessing remotely the surface 
roughness with an algorithm built from the mathematical 
principle of the roughness tester regarding the acquisition 
angle. In like manner to predict, with fuzzy logic and 
artificial neural networks, the surface finish with the tool life 
and the specimens’ grade. Thus, in Section 2 we present the 
materials put in contribution to manufacture the samples as 
well as the methods developed for the remote monitoring and 
prediction of the surface roughness. In section 3, we 
highlight the findings. 

2. Materials and Methods 

2.1. Materials 

The carbon steels 1010, 1015, 1020, 1035 were chosen as 
specimens because of their employability and the possible 
treatments they can undergo. Additionally, the variation of 
carbon percentage in the specimens helped in monitoring its 
impact over the surface roughness. The specimens were 
verified with the spectrometer Foundry Master Optik 
01N0096 and the results are taken down in table 1. The late 
machine Comec LGA180N was used with the high-speed 
steel tool: HS6-5-2 (M2) and the tungsten carbide tool: 
PCLNR 2525-M12 with CNMG 12 04 08 carbide insert. The 
Milling Machine Tiger FU90 was used with the high speed 
steel: Shell-end milling cutter 620075, and the tungsten 
carbide tool: BAP400R-63-22 Face milling cutter with 4 
flutes, APMT1604 PDER M4*10-T15 with M2-80 carbide 
inserts. 

Table 1. Average values of the chemical composition of the specimens. 

Specimen Number of tests %Fe %C %Si %P %S %Cr %Mo 

1010 3 97.8 0.08 0.026 0.067 >0.3 0.02 <0.005 

1015 2 98.5 0.148 0.215 0.026 0.02 0.03 0.007 

1020 4 98.8 0.249 0.029 0.03 0.037 0.052 0.006 

1035 3 98.4 0.421 0.165 0.026 0.301 0.044 0.007 

 
The stopwatch Sienoc Digital Professional LCD helped for 

the real-time measurement of the tool life during the 
machining processes. The roughness tester SRT6210 
contributed to measure the reference average roughness (Rref). 
The microscope MV900 with 10X magnification was 
mounted on the somikon support for the acquisition process 
in different angles of machined surfaces. Matrix Laboratory 
(Matlab, student version R2017a) built-in platforms were 
used to deploy fuzzy logic and artificial neural networks 
prediction algorithms. The portable computer HP (Hewlett 

Packard) Intel© Core™ i7-8550U @1.80GHz – 1.99GHz 
processed the said algorithms.  

2.2. Machining of Samples 

The cutting conditions in turning and in milling of 1010, 
1015, 1020, and 1035 steels are recorded in table 2. Leaning 
to the accuracy of the measurement exercise, three (03) 
samples were dry-machined per steel grade per machining 
operation following the cutting conditions (table 2). 
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Table 2. Cutting conditions of specimens in turning and milling operations (Vc in m/min, DoC in mm, ftool in mm) to the length of a specimen at L=28mm. 
 

Steel 

grade 

Turning Milling 

Øspec. 
Cutting conditions 

Øcutter 
Cutting conditions 

Vc fcalc ftool N DoC Vc fzcalc fztool N DoC 

1010 40 
40 0.2 0.2 260 

0.5 

50 40 0.128 0.15 255 

0.5 

150 0.2 0.4 1150 60 150 0.15 0.15 708 

1015 30 
40 0.2 0.2 420 50 40 0.128 0.15 255 

150 0.1 0.4 1520 60 150 0.15 0.15 708 

1025 40 
40 0.2 0.2 260 50 40 0.128 0.15 255 

150 0.2 0.4 1150 60 150 0.15 0.15 708 

1035 30 
40 0.1 0.2 270 50 40 0.128 0.15 255 

150 0.2 0.4 1520 60 150 0.15 0.15 708 

 HSS cutting conditions,  WC cutting conditions; Ø: diameter; fcalc / ftool: calculated/selected feed (turning). 
fzcalc / fztool: calculated/selected feed (milling) DoC: Depth of cut N: rotational speed of the sample/tool. 
Vc: Cutting speed. 

 

Figure 1. Samples machining protocol: (a) in turning – (b) in milling. 

 

Figure 2. Samples after the first machining operations: (a) turned specimens – (b) milled specimens. 

Two (02) runs per sample were carried out on each sample 
to enlarge the database (reference roughness and images) and 
to control the tool life (figure 1). The tool-in-cut time was 
recorded during machining and then calculated [15]. The 
samples are presented in Figure 2. 

2.3. Image Acquisition Protocol 

After machining, the sample surface was cleaned with 
compressed air and then positioned on the support coupled to 
the microscope. The focal distance was adjusted at 20mm 
above the surface. The captures were then performed at 80°, 

85°, 90°, 95°, 100° in turning, and 60°, 75°, 90°, 105°, 120° 
in milling (figure 3). 

Without regard to the acquisition angles, two (02) principal 
criteria organized the database of images. The first was built 
on a classification of images according to the nature of the 
cutting tool (high-speed steel and tungsten carbide) and then 
associated with their roughness reference values. The second 
was established to densify the database, thus fine-tuning the 
precision. And so, there was no codification of images related 
to the cutting tool, but still, they were linked to their 
roughness reference values. 
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Figure 3. Images acquisition protocol: (a) with turned specimens – (b) with milled specimens. 

2.4. Surface Roughness Measurement 

The color image from the microscope is converted into 
grayscale. The histogram equalization is applied to 
improve the image contrast. The Gaussian filter is then 
applied to reduce the effect of the waving parameters. The 
optical roughness Sa has been first calculated locally Sar 
using a 3*3 window following equation (1) and then area 
integrated on the whole surface with the consideration of 3 
neighbours for corner pixels and 5 neighbours about end-
pixels. 

�����, �� 	



�
 ∑ ∑  ���, ����


����

��

����
                     (1) 

The remote roughness ���� was a result of the regression 
of the optical values of the parameter Sa over the reference 
value Rref. Following the first criterion (§2.3), forty (40) 
values were used to train the system and twenty (20) to 
evaluate. In like manner for the second, eighty (80) values 
were employed to train the system and forty (40) to assess it. 
The performance of the method was then weighed with the 
relative error �. 

2.5. Roughness Prediction with Fuzzy Logic and Artificial 

Neural Networks 

Aiming at assessing the major influence of tool life and 
workpiece material over the surface roughness as questioned 
by Kanaa et al. (2016) [15], the input factors were the tool-
in-cut time (Tc) and carbon percentage (%C) for both 
predicting methods. Tables 4 and 5 present the experiences 
(runs) related to the values used to train the predictive 
systems in turning and milling operations, respectively.  

Regarding the fuzzy logic, the cutting conditions (spindle 
speed, feed, and depth of cut) were considered as fixed. The 
membership functions of the inputs were built over eight (08) 
subsets in the interval [0; 0.45] for the percentage of carbon 
(%C). Likewise, twenty-four (24) subsets in the interval [0; 
2280] were built for the tool life (Tc). Table 3 presents the 
decision organization that helped in defining the fuzzy sets 
related to the study.  

The inputs have been coded as X1 for the rotational speed; 
X2 for the feed; X3 for the depth of cut; X4 for the 
percentage of carbon, and X5 for the tool life and the 
predicted surface roughness is Y. 
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Table 3. Decision table for the fuzzy logic prediction. 
 

Inputs Fuzzy set appreciation Ranges with centroïd 

Rotational speed (X1) 
Very Low (VL)  Feed (X2) 

Depth of cut (X3) 

Carbon percentage (X4) 

Extra low (EL) 0 – 0.05 – 0.10 
Very low (VL) 0.05 – 0.10 – 0.15 
Low (L) 0.10 – 0.15 – 0.20 
Medium (M) 0.15 – 0.20 – 0.25 
High (H) 0.20 – 0.25 – 0.30 
Very high (VH) 0.25 – 0.30 – 0.35 
Extra high (EH) 0.30 – 0.35 – 0.40 
Extra extra high (EEH) 0.35 – 0.40 – 0.45 

Tool life (X5) - 24 subsets (0 to 2280) 

Table 4. Training values for fuzzy logic and artificial neural networks in turning with high-speed steel (HSS) and tungsten carbide (WC) and reference 

roughness (Rref), (Vc in m/min, DoC in mm, ftool in mm, Tc in s, Rref in µm). 
 

Tool Vc DoC ftool Exp Tc %C Rref Tool Vc DoC ftool Exp Tc %C Rref 

HSS 40 0.5 0.2 

02 108.4 0.1 1.74 

WC 150 0.5 0.4 

01 62.22 0.1 1.96 
03 162.6 0.1 2.22 02 124.44 0.1 2.02 
04 202.6 0.15 3.02 03 186.66 0.1 1.22 
05 242.6 0.15 3.77 05 280.0 0.15 1.8 
06 282.6 0.15 1.87 06 326.67 0.15 0.98 
07 336.8 0.25 2.82 07 381.93 0.25 1.11 
09 445.2 0.25 3.04 09 492.45 0.25 1.58 
10 553.6 0.35 4.58 10 539.12 0.35 2.96 
11 662.0 0.35 5.40 11 585.79 0.35 3.74 
13 824.6 0.1 2.28 12 632.46 0.35 2.92 
14 878.8 0.1 1.96 13 694.68 0.1 1.92 
15 933.0 0.1 2.16 14 756.9 0.1 1.78 
16 973.0 0.15 1.69 16 865.79 0.15 1.72 
17 1013.0 0.15 2.56 17 912.46 0.15 1.6 
19 1107.2 0.25 1.8 18 959.13 0.15 1.24 
20 1161.4 0.25 3.66 19 1014.4 0.25 1.89 
21 1215.6 0.25 1.85 20 1069.7 0.25 1.2 
22 1324.0 0.35 4.66 21 1125.0 0.25 2.1 
23 1432.4 0.35 3.48 22 1171.6 0.35 2.89 
24 1540.8 0.35 4.72 23 1218.3 0.35 2.74 

Table 5. Training values for fuzzy logic and artificial neural networks in milling with high-speed steel (HSS) and tungsten carbide (WC) and reference 

roughness (Rref), (Vc in m/min, DoC in mm, ftool in mm, Tc in s, Rref in µm). 

Tool Vc DoC ftool Exp Tc %C Rref Tool Vc DoC ftool Exp Tc %C Rref 

HSS 40 0.5 0.15 

01 94 0.1 2.27 

WC 150 0.5 0.15 

01 95 0.1 0.61 

03 282 0.1 5.40 02 190 0.1 0.44 

04 376 0.15 2.98 03 285 0.1 0.44 

05 470 0.15 3.62 04 380 0.15 0.47 

06 564 0.15 3.94 05 475 0.15 0.46 

07 658 0.25 2.76 06 570 0.15 0.33 

09 846 0.25 4.28 07 665 0.25 0.46 

11 1034 0.35 2.28 08 760 0.25 0.21 

12 1128 0.35 2.9 09 885 0.25 0.55 

13 1222 0.1 3.04 11 1045 0.35 0.32 

14 1316 0.1 2.82 12 1140 0.35 0.68 

15 1410 0.1 1.61 13 1235 0.1 0.16 

17 1598 0.15 3.66 14 1330 0.1 0.38 

18 1692 0.15 1.86 16 1520 0.15 0.26 

19 1786 0.25 2.84 17 1615 0.15 0.29 

20 1880 0.25 2.15 19 1805 0.25 0.36 

21 1974 0.25 1.36 20 1900 0.25 0.24 

22 2068 0.35 2.15 22 2090 0.35 0.26 

23 2162 0.35 3.98 23 2185 0.35 0.38 

24 2256 0.35 3.42 24 2280 0.35 0.16 
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Since there were no ranges on the cutting conditions, the 

rules related to the fuzzy logic exercise were as follows:  

Rules: 
if X1 is VL and X2 is VL and X3 is VL and X4 is EL and 

X5 is T1 then Y is R1. 
if X1 is VL and X2 is VL and X3 is VL and X4 is EL and 

X5 is T2 then Y is R2. 
if X1 is VL and X2 is VL and X3 is VL and X4 is EL and 

X5 is T3 then Y is R3. 
if X1 is VL and X2 is VL and X3 is VL and X4 is L and 

X5 is T4 then Y is R4. 
… 
if X1 is VL and X2 is VL and X3 is VL and X4 is EEH and 

X5 is T24 then Y is R24. 
The Mamdani inference system was implemented for the 

fuzzy logic approach (figure 4). 

 

Figure 4. Representation of the Mamdani Inference System in the works. 

The centroid of area was executed for the defuzzification 
of the predictive method.  

The neural networks method was developed from the 
backpropagation of Levenberg-Marquardt to the Multi-
Layers Perceptron (MLP) model. The architecture of the 
neural networks was 3-10-1 (figure 5). Ten (10) hidden layers 
helped to adjust the weight of the inputs to have interesting 
predicted values. For each prediction technique, twenty-four 
(24) experiences per tool and machining operation were 
implemented. Eighty (80) values for training and sixteen (16) 
to assess the system. 

The performance of the system was weighed with the 
relative error � and the Mean Square Errors (MSE) have been 
estimated with the predicted test and reference roughness 
values. 

 

Figure 5. Multi-layers’ perceptron neural networks architecture. 

MSE=



�
∑ ������  �  ��� ���!"�

��
                    (2) 

Where Rp is the Predicted roughness, Rref is the reference 
roughness or target roughness, and N is the number of data 
that helped for testing the algorithm [6]. 

3. Results and Discussion 

3.1. Roughness Measurement 

A total of ninety-six (96) hard surfaces were obtained from 
machining operations and were used to extract the reference 
roughness values and images. The set-up and the image 
acquisition protocol (figure 3) contributed to constitute a 
database of four hundred and eighty (480) color images with 
a spatial resolution of 640*480 pixels, with the radiometric 
resolution of 900KB, each image was associated to its 
roughness reference value. 

 

Figure 6. Measurement precision of Rrem in high-speed steel in milling. 

The remote surface roughness precision (Rrem) of the first 
criterion (§2.3) related to the cutting tool, the milling 
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operation, and the acquisition angle is given in Figure 6. The 
acquisition angles of 60°, 75°, and 120° in milling portray a 
very interesting achievement of the method with precisions 
attaining 83%. The results revealed inappropriate acquisition 
angles in the interval [80°; 105°], no matter the machining 
operation. In turning, none of the angles disclosed precision 
above 50% (not presented here). 
 

The results portrayed the angles of 60°, 75°, and 120° as 
interesting angles for machinists and metrologists for 
capturing images before processing. A large acceptable 
spread of angles can therefore guide to have interesting 
images, avoiding to enter the “dead valley” comprising [80° - 

105°] where the results were not remarkable. A more 
interesting approach can include to the selection of region of 
interest (ROI) when processing the images. Definitely, the 
normal incidence 90° is revealed as not appropriate to extract 
image features. The results from the turning samples were 
not of a good conclusion (under 50% of precision) and have 
not been shown here. 

Figure 7 portrays all-in-one precisions related to the first 
(blue and orange) and the second criteria (gray) explained in 
§2.3. It embodies the precision recorded with the high-speed 
steel (blue) and tungsten carbide (orange) with the milling 
operation. 

 

Figure 7. Measurement Precisions of Rrem in High-Steel (HSS) and tungsten carbide (WC) in milling. 

The results laid out a surface roughness assessment 
tributary to cutting tools. Generally, in machining the best 
surface finish is achieved with the tungsten carbide tool 
giving the lowest reference roughness values, here it’s 
observable that the high-speed steel tool adapts best to the 
method. This can be understood by the pronounced asperities 
on the high-speed steel machined surfaces which are 
presenting a clear-cut in surface illumination during the 
acquisition exercise. However, the poor unexpected precision 
of the second criterion helps to make a clear consideration of 
the cutting tool. 

The distribution of values observed with the second 
criterion could be explained following three (03) major 
factors: the cutting conditions imposed by the cutting tools 
(difference in cutting speeds and feed), the surface 
production method, and the geometry of the tool point. 

The overall results portrayed the most interesting 
acquisition angles at 60°, 75°, 105°, and 120°. The 
discordance of the precision tied up to the cutting tools, 
remains a major point of interest. Two (02) considerations 
can therefore be addressed: the measured specimens and the 
acquisition device and principle. 

The specimens’ final surface is a result of several elements. 
From the cutting tool perspective, it can be noticed from the 
results that there is a difference in precision within the same 
machining operation. An empirical approach here has set a 
better understanding of the impact of the tool geometry and 
points on the various steel grades together with heat diffusion 
and the laws of viscoplastic behavior [39]. In like manner, 
the results put back a nuance in the subdivision of the 
samples’ surface finish in terms of stochasticity and 

determinism [40] but opens the scrutiny of input and 
machining phenomena [6]. 

Concerning the acquisition device, to solve the limitation 
imposed by the numerical aperture [9], the point-to-point 
acquisition protocol was implemented. By varying the 
angular position of the sensor around 90°, there was an 
improvement in equilibrating the surface feature illumination. 
This helped to strengthen the appreciation of the optical 
roughness results related to the acquisition angle. 
Furthermore, the existence of a discrepancy of the precision 
of the angles, even with the same tool, can be explained not 
only by the closeness to 90° of the acquisition angles, but 
also by the difference in the grades of the samples. This 
understanding underlines the impact of different mechanical 
and thermal induced experiences during machining 
operations and therefore serves as a practical demonstration 
of Keblouti et al.’ works [41]. 

The 10x magnification of the acquisition device seemed to 
be weak to address the evaluation of optical roughness. The 
algorithm elaborated around the principle of the surface tester, 
enforced the correction of poor magnification. And so, the 
results of Kamguem et al., (2013) [13], by using 50x 
magnifications for the best correlation in assessing machined 
surface roughness, have been more elaborated with the use of 
lower magnification ranges. 

Moreover, the findings in this remote monitoring of 
surface roughness approach display a practical illustration of 
ISO 4288:1996 about the total dependence of roughness 
parameters on machining operations and tools. And at the 
same time, they highlight the assertions of Nexhat et al. 
(2014) [42], Kanaa et al. (2016) [15] on controlling 
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roughness from the composition of the cutting tools and 
machined samples. 

3.2. Surface Roughness Prediction 

The precisions of the prediction of the average roughness 
(blue colour) with fuzzy logic (red colour) and neural 
networks (green colour) compared to the reference values are 
portrayed in Figure 8. The test values helped to appreciate the 
closeness of the reference to the prediction. And so, it can be 
observed that the fuzzy logic prediction stands as a good 

candidate for the close follow-up of the reference. 
To conclude with accuracy about the deviation around the 

reference, table 6 was elaborated to assess the mean square 
errors between the reference values issued by the roughness 
tester and the test values from the prediction methods, 
considering the machining operations and the cutting tools. 
Table 7 has been laid to weigh the contribution of the carbon 
percentage (material content) in the precision of the 
prediction techniques regardless to the previous 
considerations. 

 

Figure 8. Measured and predicted values of roughness in turning and milling operations using the HSS and WC tools. 
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Table 6. Mean square errors (MSE) for prediction with fuzzy logic and artificial neural networks with the consideration of machining operations and the 

cutting tools. 

 Run %C 
Fuzzy Logic (FL) Artificial Networks (ANN) 

Ra RFL MSE Ra RANN MSE 

Turning 

HSS 

01 0.10 1.66 1.62 

0.297 

1.66 1.95 

0.286 
02 0.15 3.34 3.38 3.34 2.91 
01 0.25 3.34 3.31 3.34 3.36 
01 0.35 5.76 5.17 5.76 5.52 

WC 

02 0.10 1.02 0.99 

0.044 

1.02 1.57 

0.295 
01 0.15 1.56 1.5 1.56 1.77 
01 0.25 1.23 1.25 1.23 1.24 
02 0.35 1.56 1.51 1.56 1.58 

Milling 

HSS 

01 0.10 2.28 2.25 

0.032 

2.28 2.62 

0.254 
02 0.15 1.85 1.88 1.85 1.71 
01 0.25 3.14 3.12 3.14 3.49 
01 0.35 2.53 2.49 2.53 2.51 

WC 

02 0.10 0.16 0.15 

0.014 

0.16 0.19 

0.037 
02 0.15 0.21 0.20 0.21 0.26 
02 0.25 0.29 0.30 0.29 0.29 
01 0.35 0.64 0.62 0.64 0.59 

RFL: Fuzzy Logic predicted Roughness - RANN: Artificial Neural Networks predicted Roughness. 

The discrepancy observed in the mean square errors 
between the predicted values using fuzzy logic and neural 
networks (table 6) with the use of the high-speed steel and 
tungsten carbide tools, shows a minimum distance around the 
reference presenting a privileged choice of machining 

operation and cutting tool [28]. Fuzzy logic technique 
outperforms artificial neural networks in terms of the lowest 
mean square errors, giving force to the fuzzy logic supervised 
predictive method [28, 37]. 

Table 7. Mean square errors (MSE) for prediction with fuzzy logic and artificial neural networks with the consideration of material content. 

%C 
Fuzzy Logic (FL) Artificial Neural Networks (ANN) 

Ra RFL MSE Ra RANN MSE 

0.10 

1.66 1.62 

0.000875 

1.66 1.95 

0.125775 
1.02 0.99 1.02 1.57 
2.28 2.25 2.28 2.62 
0.16 0.15 0.16 0.19 

0.15 

3.34 3.38 

0.00155 

3.34 2.91 

0.062775 
1.56 1.5 1.56 1.77 
1.85 1.88 1.85 1.71 
0.21 0.20 0.21 0.26 

0.25 

3.34 3.31 

0.00045 

3.34 3.36 

0.03075 
1.23 1.25 1.23 1.24 
3.14 3.12 3.14 3.49 
0.29 0.30 0.29 0.29 

0.35 

5.76 5.17 

0.08815 

5.76 5.52 

0.015225 
1.56 1.51 1.56 1.58 
2.53 2.49 2.53 2.51 
0.64 0.62 0.64 0.59 

RFL: Fuzzy Logic predicted Roughness - RANN: Artificial Neural Networks predicted Roughness. 

The mean square errors according to the material content 
show extremely low values, hence satisfying and even 
orienting the decision making in predicting with fuzzy logic 
using mild steels (0.10 to 0.25) to have maximum closeness 
to the reference values. The artificial neural networks, from 
tables 6 and 7, present a preference to medium steels, 
considering or regardless to machining operations, cutting 
tools, and material content. 

The tool life, used as an input, refers to the wear of the 
cutting tool under normal operating conditions. The 
prediction results present the possibility of roughness control 
by the tool life [43] and reinforcing the assertions of Kanaa et 
al. (2016) [15] on the powerful impact of the tool life and the 

material content over the surface quality (finish) of the 
specimen. 

The comparison of each predictive technique to reference 
roughness led to the juxtaposition of predictive precisions 
related to machining operations and cutting tools. The 
predictive precisions of average roughness (Ra) with fuzzy 
logic (red colour) and artificial neural networks (green colour) 
are portrayed in Figure 9. 

Figure 9 (a) displays the precision in turning operation with 
tungsten carbide (WC) tool, with 97.06% and 90.19% for 
fuzzy logic and neural networks respectively. With the high-
speed steel (HSS) tool, the precisions are 98.76% and 94.62% 
for fuzzy logic and neural networks, respectively. 
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Figure 9 (b) presents the precision in milling operation in 
tungsten carbide (WC) as 98.12% and 93.37% for fuzzy logic 
and neural networks, respectively. In high-speed steel (HSS), 

the precisions are 98.46% and 94.18% for fuzzy logic and 
neural networks, respectively. 

 

(a) Precision in turning – (b) precision in milling 

Figure 9. Prediction Precision of Ra in high-speed steel (HSS) and tungsten carbide (WC). 

All over the predictive techniques, the precision 
percentage is above 90. The robustness of the method is 
highlighted, all machining operations and cutting tools 
considered: the surface roughness can therefore be predicted 
with the tool life and samples’ grades. This adds the list 
proposed by Vasanth et al. (2020) [30] of meaningful inputs 
in predicting machined surface roughness. In turning and 
milling operations, the tungsten carbide shows the lowest 
precisions and then establishes a preference to the high-speed 
steel for such exercise. The highest precisions are recorded in 
the milling operations. 

4. Conclusion 

The appropriate material selection, cutting tools, and 
cutting conditions are the major preoccupations of machinists 
and metrologists in surface roughness assessment and 
prediction. This paper presented a surface roughness remote 
measurement articulated on the acquisition angles of images 
and the prediction of surface finish based on the tool life and 
workpiece composition. The results portrayed: 

(i) The effective possibility to achieve the non-contact 
measurement at 60°, 75°, and 120°, with precision attaining 83%. 

(ii) The impact of the cutting tools on the surface finish. 
The high-speed steel tools demonstrated, all machining 
operations considered, the dominant precision in the models 
developed in this work. 

(iii) The achievability of surface finish prediction with the 

tool life and workpiece content taken as input parameters. An 
overall precision above 90% is recorded for the fuzzy logic 
and neural networks predictive techniques. 

(iv) The fuzzy logic predictive method surpasses, 
regardless of the cutting tools or the machining operations, 
the artificial neural networks. 

At this level of surface metrology, this study opens the 
consideration of additional factors in executing the surface 
roughness remote monitoring. In like manner, there are trends 
of reviewing the reference measurement process of surface 
roughness to improve the remote monitoring precision. 
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