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Abstract: This paper provides an effective approach, known as dynamic financial analysis, to the systematic development of 

stress scenarios for the risk profile of non-life insurers, which can be used in risk analysis for the regulatory and rating 

assessment. The determination of company-specific stress scenarios is demonstrated, the resulting critical scenarios are 

described. Non-linear dependencies have a significant impact on the scenarios, some of which have not previously been 

adequately considered are introduced. The recent global financial crisis illustrates that the analysis of extreme events, which 

can affect both sides of the balance sheet, is essential in an asset-liability management context. 
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1. Introduction

In a deregulated insurance market, in which state-

prescribed large margins do not replace risk awareness, stock 

price jumps, valuation changes of entire asset classes and 

major loss scenarios caused by natural disasters or technical 

innovations necessitate the subsequent inclusion of extreme 

scenarios into the business plan. Under the EU insurance law, 

Solvency II, the development of reliable stress test 

procedures is now required. Even the International 

Association of Insurance Supervisors (IAIS) has mentioned 

the possible company-specific development of stress tests 

related to the functioning and usefulness. Stress tests used to 

explore especially unfavorable trends are an indispensable 

element of risk management in insurance companies [1]. In 

practice, such stress tests constitute an important addition to 

the stochastic methods based on an economic view and to the 

risk-based-capital concepts with a static character, as 

currently exercised in the USA, Canada and Australia. 

Development scenarios in stress tests are assumed to be 

deterministic. They are used to verify their impact on the 

balance sheet and typically consider scenarios involving 

extreme and therefore rare developments in the capital 

market; examples include the German 'Stresstest' of the 

Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) [2], 

the 'Resilience Test for Life Insurers' and the 'Reverse-Stress 

Test' of the Financial Services Authority (FSA) in the United 

Kingdom [3]. The background of these aforementioned 

scenarios are financial theoretical considerations based on 

historical data. In the banking sector, stress testing using such 

hand-picked pure scenarios also originated in the evaluation 

of market risk [4] and has been extended to credit risk [5] and 

macro analysis [6]. Stress scenarios focusing on the 

company-specific risk situation of an insurer can also be 

derived using an entirely different approach known as 

dynamic financial analysis (DFA) [7]. Non-linear 

dependencies are particularly important in the modeling of 

extreme events [8]. 

DFA is a tool for the systematic and holistic analysis of a 

company's financial performance for several time periods 

into the future [9]. In this paper, the influence of extreme 

events on a non-life insurer is examined based on a company-

specific DFA model that reflects the risk and return profile of 

the company, considering the mutual dependence of the key 

risk drivers. Non-linear dependencies are modeled using 

various types of copulas, whose effects are studied in the 

context of stress testing. A practical and flexible approach to 

the determination of stress scenarios is presented, in which a 

cluster analysis based on selected worst scenarios is 

performed. 
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An important outcome of this study is that non-linear 

dependencies and the number of considered critical scenarios 

have a strong influence on the form and composition of the 

sources of risk. This result should be taken into account by 

the supervisory authorities and rating agencies. For example, 

a very unfavorable development in the number and amount 

of claims could occur together with a very unfavorable 

capital market trend at the same time. Therefore, it is clearly 

insufficient to consider only selected capital market scenarios 

in risk management. 

The current paper focuses on two themes: the application 

of DFA and the integration of copulas into them. DFA 

became an important financial analysis tool in insurance 

undertakings in the late 1990s. The Casualty Actuarial 

Society (CAS) made a decisive contribution to the field 

through its abundance of background materials [9]. 

Meantime, there are numerous treatises in the scientific 

literature. The basic DFA structure was presented by [10] and 

[11], along with example applications. In [12-14], DFA was 

applied as a decision-making tool. The theoretical foundation 

of the copula concept was introduced by [15]. However, 

copulas were only established into the mathematics of 

insurance in the late 1990s by [16] and [17]. An overview of 

the applications of copulas to financial mathematics was 

provided by [18]. In [19-21], various problems on copula 

estimation were studied. Various algorithms for constructing 

Archimedean copulas were presented in [22-24]. 

The current analysis builds directly on a DFA model 

presented in [25]. In this model, various types of copulas are 

implemented, and the effects of the employed copulas on the 

gain and risk of an insurer are analyzed. In [25], large 

differences in the risk measures depending on the copula 

concept are found. However, certain aspects of DFA 

implementation have not been analyzed in the previous 

literature, despite the growing importance of the DFA 

framework in theory and practice. One aspect that has not 

been considered is the integration of stress testing into DFA 

models. The aim of the present study is to identify stress 

scenarios for non-life insurers under different dependence 

structures, which can then be used for stress testing. In 

contrast to the traditional definition, a stress scenario is 

defined in this paper by negative economic attributes in all of 

the underlying risk factors. Not only are the impacts of the 

scenarios on the investments modeled, but also their impacts 

on the other items in the balance sheet. A fundamental 

finding of this paper is that it is crucial to consider non-linear 

dependencies to improve the determination of stress 

scenarios. This result is important from both the regulatory 

perspective and the rating agency’s as well, as traditional 

stress scenarios can underestimate the company-specific risk. 

Since stress tests are essential in risk management, 

appropriate stress scenarios derived from a DFA model 

should be incorporated into the regulatory and rating 

assessment frameworks. 

The remainder of the article is organized as follows. In 

Section 2, the concept of stress testing based on DFA is 

introduced. The method for constructing stress scenarios 

using a DFA model is presented in Section 3. In Section 4, 

the derivation of extremely severe scenarios, including the 

mathematical modeling techniques and implementation of 

non-linear dependencies, is demonstrated through a 

simulation study. Section 5 concludes the paper. 

2. Integration of Stress Testing in DFA 

The DFA model oriented to the structure of, e.g., [11] and 

[26] has been created and developed to simulate the 

evolution of the financial and risk situation of an insurer for a 

wide range of possible scenarios.1  The simulation results 

demonstrate how internal and external conditions can 

influence the financial results of the company [9]. The DFA 

definition of the CAS (see [9], Chapter 6, p. 2 et seq.) states 

that “[…] The process of DFA involves testing a number of 

adverse and favorable scenarios regarding an insurance 

company's operations. DFA assesses the reaction of the 

company's surplus to the various selected scenarios.“ The 

strength of the DFA model lies precisely in the fact that in its 

run, individual adverse scenarios are implicitly analyzed as 

well as individual favorable scenarios. This approach is 

similar that of stress testing [1]. Additional facts are included 

by the DFA that are not considered in other models 

representing only 'normal' business performance. 

However, the term 'scenario' is not clearly defined. More 

precisely, we must distinguish linguistically between a 

scenario that is an assumption in a simulation and a scenario 

that is a result of a simulation; note that the input variables of 

a stochastic model are related to its output, because some 

variables must be modified during the simulation. The CAS 

differentiates between two mutually exclusive definitions of 

scenarios in a stochastic model [9]: the 'parameter scenario' 

and the 'run scenario'. The parameter scenario can be 

described as the summary of the employed assumptions 

regarding the underlying distributions. For example, 

catastrophic losses can be modeled by a Pareto distribution 

with a specified mean and dispersion parameter. Whereas the 

run scenario represents an individual run of the parametric 

model. For example, if the parametric model runs 500,000 

times, and therefore 500,000 simulations are taken into 

account for the analysis, each of the 500,000 runs can be 

considered as a scenario. 

3. Implementation of Stress Testing in a 

DFA Framework 

This section focuses on the determination and evaluation 

of adverse scenarios based on DFA simulation results. 

Therefore, the term 'scenario' is understood to refer to a run 

scenario presented in the previous section. 

For identification of adverse scenarios the proportionate 

                                                             

1 The DFA is based on a stochastic model, e.g. the future financial and risk 

situation in the non-life insurance industry is measured by means of an extensive 

stochastic modeling as opposed to traditional scenario analysis with selected 

deterministic scenarios [11]. 
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worst scenarios among the generated simulations, i.e., those 

yielding the most extreme financial results over the observed 

time horizon, can be investigated. High demands are 

therefore made on the input and the model framework. In 

particular, parameter values that lead to poor results have 

been admitted. For example, the company's business result 

may be affected by the selected height of the volatility of the 

investment return. In the framework, the algorithms must 

exclude impossible results; otherwise, the algorithms must 

not unnecessarily restrict the range. The quality of the DFA 

model depends on its functionality within the boundary area. 

For extreme results, cases in which the company earns an 

exorbitant profit are less interesting; results leading to the 

company's ruin and disappearance from the market are more 

interesting, leading to the term 'poor results'. 

In this paper, the term 'poor' is used to describe those 

scenarios that lead to the company's economic ruin during the 

selected time horizon. The classification for poor scenarios is 

based on two criteria. The sooner the ruin occurs, the more 

unfavorable the result of the simulation is perceived, thus the 

first criterion is the time of the ruin. The next criterion for 

classification is the amount of the loss. The more negative 

the equity capital is, the worse the result of the simulation. 

All of the results can be standardized for better comparison. 

The scaling can be performed using discounting by the risk-

free rate of return at time 0 to achieve a uniform view. 

The risk factors of the scenarios which lead to poor results 

normally show a wide range of characteristics. To account for 

data with different types of attributes, it is appropriate to 

group them into classes to allow a better analysis based on 

the obtained structuring. The cluster analysis can be used for 

the classification.2  In clustering, the data are summarized 

based on their similarity. Objects within the same cluster 

have strong similarities to one another in terms of their 

characteristics but are dissimilar to objects in other clusters 

[27]. 

A number of different methods have been developed for 

the identification of clusters in [28-31]. In the following 

simulation study, the clusters are identified using the Ward's 

minimum variance method [32], implemented recursively 

using the Lance-Williams algorithm [33].3 The partition can 

be determined by considering large jumps in the increase of 

the heterogeneity. Ward's method is an agglomerative 

hierarchical clustering procedure in which groups are 

gradually merged. In practice, the method generates highly 

homogenous, compact groups and constitutes a stable 

procedure. It is one of the most widely used methods in 

clustering analysis [34]. 

In the approach taken in this paper, the clusters are defined 

                                                             

2 The risk factors in the poor scenarios have different characteristics, arguing 

against using an average observation, which would lead to the loss of too much 

relevant information. More information is maintained by considering quantiles. 

However, it is still impossible to extract the relations between the risk factors. 

3 Applying Ward's method appears to be plausible because it is directly related to 

the Euclidean distance. The poor scenarios with, e.g., similar investment returns 

and loss ratios have a Euclidean distance close to zero. They are pooled into one 

group, and the within-group sum of squares is small. 

to be stress scenarios. For this purpose, the classification of 

poor scenarios should be chosen in such a way that risk 

factors and financial values within a given cluster are 

comparable. The objective of reducing the variety of 

individual cases in a given group to one case corresponding 

to the mean of the individual cases can thereby be achieved. 

The obtained stress scenarios are specific to the profile of the 

insurer and are therefore realistic and objective despite their 

severity. In a stress test using these adverse scenarios, all of 

the risk factors that affect the solvency of an insurance 

company over a prescribed time period are included. Stress 

testing using such mixed scenarios addresses all of the 

relevant risk categories that are reflected in the DFA model. 

4. Stress Scenarios in a Simulation Study 

4.1. Simulation Model 

The analysis is intended to focus on the general method of 

identifying stress scenarios. A simplified model of a non-life 

insurance company using real-world data from a German 

insurer based on [14] and [25] is therefore employed. Tables 

5-8 in the appendix summarize the model assumptions and 

parameters. 

The simulation study is performed for a five-year time 

period. Two types of liabilities are differentiated in the loss 

model, non-catastrophic losses and catastrophic losses. The 

underwriting result at the end of period t, which assesses the 

development of the accident year exactly, is applied as a 

measure of the underwriting profitability. This quantity 

consists of the premiums less the claims and expenses 

(upfront and claims settlement costs): 

�� = ���� − �� − 	
���� − 	
�� , t = 1, 2, …, 5.     (1) 

On the investment side, a distinction is made between 

high-risk investments (with portion αt-1 and return r1t in 

period t), such as stocks, and low-risk investments (with 

portion (1 – αt-1) and return r2t in period t), such as 

government bonds. The investment result at the end of period 

t is calculated by multiplying the portfolio return by the free 

capital: 


� = ��� ⋅ ����with ��� = ���� ⋅ ��� + (1 − ����) ⋅ ���, t = 1, 

2, …, 5.                  (2) 

given a tax rate tr on positive earnings, the company's 

earning is computed from the underwriting and investment 

result as follows: 

	� = 
� + �� −��
(�� ⋅ (
� + ��),0), t = 1, 2, …, 5.  (3) 

Finally, the development of the equity capital at the end of 

period t is described as follows: 

	�� = 	���� + 	� , t = 1, 2, …, 5.              (4) 

The model depicts two asset classes, high-risk and low-

risk investments, and two types of liabilities, non-

catastrophic and catastrophic losses. In modeling the 
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dependencies between these risk categories, correlated 

random numbers are generated. The measurement of the 

dependencies is described via the rank correlation coefficient 

Kendall's tau [35], which captures non-linear dependencies, 

in contrast to the commonly used linear correlation 

coefficient. 4  The correlations are modeled using various 

copula types from two important copula families: elliptical 

copulas (Gauss, t) and Archimedean copulas (Gumbel, 

Clayton, Frank).5 These five copulas, including their survival 

copulas, differ in the form of their tail dependence; the 

properties of the copulas are summarized in Table 9 and 10 in 

the appendix [18,37].6 They are suitable for stress scenario 

analysis due to the different effects of the different forms of 

tail dependence [25]. In addition, they are widely applied in 

actuarial practice and their fitting to data is quite simple [39]. 

Typical management strategies, e.g., growth or solvency 

strategies, often fail in extreme scenarios because they are 

designed for the normal development of the insurance 

company [40]. It therefore appears sufficient to assume that 

the model parameters are unaffected by the management 

rules in the analysis of stress scenarios. 

In the analysis of the financial and risk situation, eight 

different measurements of the risk, return and performance 

are calculated. The expected gain per period is used as an 

absolute measure of return: 

	(�) = �(�� )���!
"

.                         (5) 

The return on investment, based on the ratio of the 

expected gain to the invested capital, is used as a relative 

measure of return: 

#$
 = (�(�� )
��!

)
%
 − 1.                      (6) 

A distinction is made between measures of the total risk 

and downside risk, and measures describing the risk as a risk 

capital requirement are also distinguished. The standard 

deviation of the gain per period is a total risk measure 

because it measures the deviation from the expected value in 

two directions: 

                                                             

4 Concretely, three dependencies on two levels are represented in the model: The 

investment returns are correlated through the parameter ρτ1. The non-catastrophic 

losses are connected to the catastrophic losses through the parameter ρτ2 and the 

assets are connected to the liabilities through the parameter ρτ3. 

5  The three Archimedean copulas and their respective survival copulas are 

implemented as hierarchical Archimedean copulas (HACs) [22,36]. HACs are a 

generalization of multivariate Archimedean copulas, with improve flexibility, as 

they do not depend on a single parameter. In contrast to normal Archimedean 

copulas, HACs define the dependence structure recursively. In the four-

dimensional case, the copula function is given by �(&�, &�, &', &() = )'()'
�� ○

)�()���(&�) + )���(&�)) + )'
�� ○ )�()�

��(&') + )�
��(&())), with three generator 

functions )�, )�	and )'. 

6 Tail dependence is defined as follows in [38]: ,-:= lim
2↓4

�(5� ≤ 789
��(&) ∣ 5� ≤

78%
��(&)) is the lower tail dependence coefficient and ,2:= lim

2↑�
�(5� > 789

��(&) ∣

5� > 78%
��(&)) is the upper tail dependence coefficient for two random variables 

X1 and X2 with marginal distributions 78%and 789 . A positive coefficient ,2	(,-) 
shows that the two random variables are asymptotically dependent in the upper 

(lower) tail; a vanishing coefficient indicates that they are asymptotically 

independent.  

=(�) = >(�� )

"
.                             (7) 

In contrast, downside risk measures, such as the ruin 

probability or expected policyholder deficit, take only 

negative deviations into account. The ruin probability can be 

obtained as follows: 

#� = ��(?̂ ≤ 5), with ?̂ = BCD{� > 0 ∣ 	�� < 0, � =
1, 2, . . . , 5},                  (8) 

where ?̂ indicates the date of the first occurrence of ruin [41]. 

Information on the amount of loss in the event of insolvency 

is available through the expected policyholder deficit: 

	�K = ∑ 	"
�M� (��
(−	�� , 0) ∣ 	�� < 0) ∙ (1 + �O)��, (9) 

where rf is the risk-free rate of return. The risk capital can be 

determined from risk measures such as the value at risk and 

the tail value at risk. A loss P� = −(	�� − 	����), for period 

t = 1, 2, …, 5 with distribution function 7QR , is therefore 

assumed. Assuming a significance level 0 < α < 1, the value 

at risk is defined as the lower (1 – α)-quantile of 7QR [42-43]: 

S�#T(P�) = U��T(P�) = BCD{
 ∣ 7QR(
) ≥ 1 − �}, (10) 

and the tail value at risk is defined as the expected loss of the 

100 ∙ � percent worst cases: 

WS�#T(P�) = 	(P� ∣ P� ≥ S�#T(P�)).        (11) 

Along these lines, a multi-year risk capital concept 

assuming a time horizon of five periods is considered [26]. 

The random variable MaxLoss, which corresponds to the 

maximum of the cumulative loss of each simulation, is 

defined as follows: 

X�
PYZZ(W) = ��
{�&�PYZZ� ∣ � = 1, 2, . . . , 5},   (12) 

where �&�PYZZ� = P� ∙ (1 + �O)�� and �&�PYZZ� =

�&�PYZZ��� + P� ∙ [1 + �O\
��

,	� = 2, . . . , 5 , with the risk-

free rate of return rf . Therefore, the insurance can cover all 

losses over the entire time horizon without further additional 

capital if this amount is available at t = 0 in the simulation 

path. In the calculation of the multi-year risk capital 

requirement, selected risk measures, such as the VaR and 

TVaR, can be applied. 

Furthermore, three performance measures are considered, 

each differing in the numerator. The Sharpe ratio, based on 

the standard deviation, is the ratio of the risk premium and 

the standard deviation of the returns [44]: 

]#> =
�(��^)���!∙(�_`a)

^

>(��^)
.                      (13) 

This ratio measures both the negative and positive 

deviations of the returns in relation to the expected value. 

Both deviations are not captured if the ruin probability or the 

EPD is used in place of the standard deviation: 

]#b� =
�(��^)���!∙(�_`a)

^

b�
,                  (14) 
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]#��c =
�(��^)���!∙(�_`a)

^

�c�
.               (15) 

These two ratios include only negative deviations of the 

returns. 

4.2. Original Simulation Results 

The results for eight dependence structures generated from 

500,000 simulations on the basis of a Monte Carlo simulation 

are shown in Table 1. The case assuming independence 

results in an expected gain E(G) of €28.56 million, a return 

on investment ROI of 23.76% and a standard deviation σ(G) 

of €15.44 million per period. The ruin probability RP is 0.35% 

for the five-period time horizon. 

Table 1. Simulated return, risk and performance profile. 

Dependence Structure No corr. Gauss t Gumbel Survival Gumbel Clayton Survival Clayton Frank 

Tail Dependence none none upper, lower upper lower lower upper none 

E(G) in mill. € 28.56 28.04 27.98 28.09 27.80 27.70 28.16 28.08 

ROI 23.76% 23.47% 23.43% 23.49% 23.33% 23.27% 23.54% 23.49% 

σ(G) in mill. € 15.44 17.91 17.89 19.38 19.78 20.67 19.03 17.63 

RP 0.35% 1.16% 1.40% 0.89% 1.90% 1.91% 0.81% 0.93% 

EPD in mill. € 0.04 0.15 0.21 0.93 1.40 1.95 0.83 0.13 

VaR0,005(MaxLoss) in mill. € 230.54 293.39 326.89 270.99 361.69 354.67 258.42 269.39 

TVaR0,005(MaxLoss) in mill. € 278.59 349.17 404.34 488.88 669.65 768.01 457.74 321.43 

SRσ 1.69 1.43 1.43 1.33 1.28 1.22 1.35 1.46 

SRRP 36.94 11.04 9.16 14.41 6.68 6.61 15.99 13.75 

SREPD 3.18 0.83 0.61 0.14 0.09 0.06 0.15 1.01 

E(G): expected gain per period; ROI: return on investment; σ(G): standard deviation of the gain per period; RP: ruin probability; EPD: expected policyholder 

deficit; VaR0.005(MaxLoss): five-year risk capital using the 99.5% VaR; TVaR0.005(MaxLoss): five-year risk capital using the 99.5% TVaR; SRσ: Sharpe ratio 

based on standard deviation; SRRP: Sharpe ratio based on ruin probability; SREPD: Sharpe ratio based on expected policyholder deficit. 

The comparison with the different dependence structures 

illustrates that the impact of the dependence structure on the 

expected gain is relatively limited. The expectation E(G) is 

reduced by 1.39% to 3.02%, depending on the copula type. 

For example, using the Frank copula (in which only linear 

dependencies are taken into account), the expected gain is 

reduced by 1.68%, from €28.56 million to €28.08 million per 

period. The picture is similar for the return on investment. 

However, the correlation assumptions have a strong influence 

on the considered risk measures. Depending on the copula 

type, the standard deviation σ(G) increases by between 14.15% 

(from €15.44 million to €17.63 million using the Frank 

copula) and 33.86% (from €15.44 million to €20.67 million 

using the Clayton copula). The five-year risk capital using 

the downside risk measure value at risk (VaR), which is 

€230.54 million assuming independence, increases by 

between 12.09% (to €258.42 million using the survival 

Clayton copula) and 56.88% (to €361.69 million using the 

survival Gumbel copula). The five-year risk capital using the 

downside risk measure tail value at risk (TVaR) grows faster 

for some copulas because of the 'I-point-consideration' 

property of the VaR. The risk capital increases by between 

15.38% (from €278.59 million to €321.43 million using the 

Frank copula) and 175.65% (from €278.59 million to 

€768.01 million using the Clayton copula). Even greater 

changes occur in the other two downside risk measures, the 

ruin probability RP and the expected policyholder deficit 

EPD. Using the Gauss copula, the RP increases from 0.35% 

to 1.16% (+228.06%) and the EPD increases from €0.04 

million to €0.15 million (+273.72%). As a consequence, the 

performance measured by using the Sharpe ratio (SR) is 

lower compared to the uncorrelated case: SRσ decreases by 

15.48%, SRRP decreases by 70.12% and SREPD decreases by 

73.77%. The extreme effects are related to the type of 

dependency. The ruin probabilities are lower for copulas 

exhibiting dependence in the upper tail compared to the ruin 

probabilities for copulas that display no tail dependence; 

these probabilities are in turn lower than the ruin 

probabilities using copulas exhibiting lower tail dependence. 

The expected policyholder deficit and five-year risk capital 

using the TVaR are higher for the non-symmetric copulas 

than for the symmetric copulas. This stems from the fact that 

the non-symmetric copulas generate more extreme values in 

the tail compared to the symmetric copulas. The EPD and 

TVaR display both lower tail dependence and asymmetry of 

the copulas. 

4.3. Analysis of Poor Scenarios Using Clustering 

Considering the chosen dependence structure, a different 

number of scenarios may satisfy the definition of a poor 

scenario (see Table 2). The relations between the ruin 

probabilities for the various dependence structures are 

reflected here. For example, 1,771 scenarios (0.35% of all 

runs) lead to the company's economic ruin over the 

considered time horizon of five periods for the case with no 

correlations, versus 9,371 scenarios (1.87% of all runs) for 

the case where the Clayton copula is used. The distribution of 

the scenarios across the single periods is quite similar for all 

of the dependence structures. In the first period, there are 

fewer poor scenarios than in the following years. 
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of Company

Dependence Structure No corr. Gauss 

Tail Dependence none none 

Period 1 63 333 

Period 2 343 1,288 

Period 3 470 1,893 

Period 4 484 1,131 

Period 5 411 1,165 

Total 1,771 5,810 

 

Examples of poor scenarios are the worst 15 scenarios and 

the corresponding sources of risk and financial results for the 

case with no correlation shown in Table 3. These scenarios 

already lead to the company's ruin in the first period (EC

0). The high-risk investment return is below 

and the range of the return is between -3% and 

low-risk investment return is not nearly as unfavo

its lower volatility; the low-risk investment return is 0% on 

average. There are scenarios in which the low

investment return is close to the expected value of 5% as well 

as scenarios for which the return is nearly -

is quite high for each of the worst 15 scenarios. In most cases, 

Table 3

 
EC0 in 

mill. € 

EC1 in 

mill. € 
r11 r21 

1 75 -31.75 -26.93% -6.78% 

2 75 -21.98 -39.81% 4.26% 

3 75 -16.84 -43.55% 3.40% 

4 75 -16.62 -19.74% -5.01% 

5 75 -15.38 -22.56% 0.57% 

6 75 -15.35 -15.53% 8.80% 

7 75 -13.86 -34.86% -1.66% 

8 75 -12.99 -23.38% -1.98% 

9 75 -12.03 -17.60% -2.83% 

10 75 -11.33 -29.89% -2.19% 

11 75 -11.01 -39.02% -1.76% 

12 75 -10.81 -3.01% 5.99% 

13 75 -10.00 -50.09% -3.46% 

14 75 -9.86 -22.84% 4.35% 

15 75 -9.17 -25.18% -6.79% 

EC0: equity capital at the end of period 0; EC1: equity capital at the end of period 1; r

in period 1; rp1: return of the investment portfolio in period 1; C

in period 1; ER1: expense ratio in period 1; U1: underwriting result in period 1; I

rp: return of the investment portfolio; LR: loss ratio. 

Figure 1. 3D plot of the clustered risk factors of the 1,771 worst scenarios 

assuming independence. 
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Table 2. Number of poor scenarios. 

t Gumbel Survival Gumbel Clayton 

upper, lower upper lower lower 

978 178 1,555 1,352 

1,571 874 2,245 2,295 

1,704 1,144 2,225 2,271 

1,535 1,155 1,860 1,871 

1,192 1,024 1,519 1,582 

6,980 4,375 9,404 9,371 

Examples of poor scenarios are the worst 15 scenarios and 

the corresponding sources of risk and financial results for the 

Table 3. These scenarios 

already lead to the company's ruin in the first period (EC1 < 

risk investment return is below -25% on average, 

3% and -50%. The 

risk investment return is not nearly as unfavorable due to 

risk investment return is 0% on 

average. There are scenarios in which the low-risk 

investment return is close to the expected value of 5% as well 

-7%. The loss ratio 

quite high for each of the worst 15 scenarios. In most cases, 

the loss ratio is significantly above 100% (the expected value 

is 85.25%) and varies by up to 30%. The expense ratio is 

approximately 11%. Given that the claims settlement costs 

depend on the claims through a percentage factor, so that a 

high loss ratio induces a high expense ratio, the expense 

ratios fluctuate. The wide range of characteristics of the 

specific risk factors has the effect that roughly equally high 

losses can stem from different c

can be affected equally by a negative underwriting and 

investment result (see the 11th worst scenario), a very high 

underwriting loss (see the 12th worst scenario) or a very 

negative investment result (see the 13th worst scena

Table 3. The worst 15 scenarios, assuming independence. 

rp1 
Cncat,1 in 

mill. € 

Ccat,1 in 

mill. € 
LR1 ER1 

 -14.84% 245.14 0.03 122.58% 11.13% 

-13.36% 239.14 0.45 119.79% 10.99% 

-15.38% 229.52 0.10 114.81% 10.74% 

 -10.90% 239.72 0.96 120.34% 11.02% 

-8.69% 245.09 0.02 122.55% 11.13% 

-0.93% 264.25 0.40 132.32% 11.62% 

 -14.94% 227.68 0.21 113.94% 10.70% 

 -10.54% 237.67 0.47 119.07% 10.95% 

 -8.74% 240.30 1.49 120.89% 11.04% 

 -13.27% 228.86 0.82 114.84% 10.74% 

 -16.66% 220.36 0.45 110.40% 10.52% 

2.39% 268.67 0.03 134.35% 11.72% 

 -22.11% 204.40 1.71 103.06% 10.15% 

-6.53% 244.29 1.00 122.65% 11.13% 

 -14.15% 225.36 0.05 112.71% 10.64% 

: equity capital at the end of period 1; r11: high-risk investment return in period 1; r

: return of the investment portfolio in period 1; Cncat,1: non-catastrophic claims in period 1; Ccat,1: catastrophic claims in period 1; LR

: underwriting result in period 1; I1: investment result in period 1; E1: earning in period 1.
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Finally, for all poor scenarios across all dependence 

structures – not only for the case of the 15 worst scenarios 

without correlation modeling 

capital market and/or very unfavorable claim developments 

are responsible for the insurer's ruin. Th

without exception, well above the simulation average. It is 

different for investment returns; in this case, the entire range 

of developments (from good to normal to bad) is covered.

To analyzing these poor scenarios a cluster analysis usin

the Ward's minimum variance method [32] has been done. At 

the beginning of the clustering process, the following 

variables are selected for clustering because they have been 

identified as relevant characteristics: the loss ratio, high

investment return and low-risk investment return. For each of 

the eight dependence structures, the worst scenarios are 

divided into six clusters, in consideration of different 
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Survival Clayton Frank 

upper none 

106 144 

709 912 

1,050 1,241 

1,054 1,253 

958 1,062 

3,877 4,612 

the loss ratio is significantly above 100% (the expected value 

is 85.25%) and varies by up to 30%. The expense ratio is 

approximately 11%. Given that the claims settlement costs 

aims through a percentage factor, so that a 

high loss ratio induces a high expense ratio, the expense 

ratios fluctuate. The wide range of characteristics of the 

specific risk factors has the effect that roughly equally high 

losses can stem from different causes. For instance, the loss 

can be affected equally by a negative underwriting and 

investment result (see the 11th worst scenario), a very high 

underwriting loss (see the 12th worst scenario) or a very 

negative investment result (see the 13th worst scenario). 

U1 in 

mill. € 

I1 in 

mill. € 

E1 in 

mill. € 

 -65.46 -38.18 -103.64 

 -59.77 -34.38 -94.16 

 -49.61 -39.56 -89.17 

 -60.89 -28.05 -88.95 

 -65.40 -22.35 -87.75 

 -85.32 -2.40 -87.72 

 -47.85 -38.43 -86.27 

 -58.30 -27.13 -85.43 

 -62.02 -22.48 -84.49 

 -49.68 -34.13 -83.81 

 -40.63 -42.87 -83.50 

 -89.45 6.15 -83.31 

 -25.65 -56.88 -82.53 

 -65.59 -16.80 -82.38 

 -45.32 -36.40 -81.72 

risk investment return in period 1; r21: low-risk investment return 

: catastrophic claims in period 1; LR1: loss ratio 

: earning in period 1. 

poor scenarios across all dependence 

not only for the case of the 15 worst scenarios 

without correlation modeling – very adverse trends in the 

capital market and/or very unfavorable claim developments 

are responsible for the insurer's ruin. The loss ratio is, 

without exception, well above the simulation average. It is 

different for investment returns; in this case, the entire range 

of developments (from good to normal to bad) is covered. 

To analyzing these poor scenarios a cluster analysis using 

the Ward's minimum variance method [32] has been done. At 

the beginning of the clustering process, the following 

variables are selected for clustering because they have been 

identified as relevant characteristics: the loss ratio, high-risk 

risk investment return. For each of 

the eight dependence structures, the worst scenarios are 

divided into six clusters, in consideration of different 
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population sizes, and the corresponding mean values of the 

risk factors and financial values are calculated. The clustering 

of the poor scenarios under the assumption of independence 

is shown in Figure 1. The figure shows a three-dimensional 

representation of the clustering variables, with one 

characteristic plotted on each axis. The three variables are 

standardized so that they can be directly compared to one 

another and plotted in an unbiased fashion. Detailed results 

of the clustering procedure are available upon request. 

In addition, the clusters can be assigned to the case groups 

presented in Table 4 to compare the results for the different 

dependencies. Case 1 contains scenarios that are 

characterized by very negative trends on the capital market 

for both high-risk and low-risk investment returns; an 

increased loss ratio therefore cannot be compensated. Case 1' 

represents an attenuation of case 1 with respect to the 

investment returns. Case 2 differs from case 1 in the 

breakdown of the investment results. The high-risk 

investments result in such poor investment performance that 

even an acceptable low-risk investment return cannot 

substantially improve the performance of the company. The 

high-risk investment return in case 2' is not as bad as that in 

case 2; however, this improvement in the high-risk 

investment return coincides with a change for the worse in 

the low-risk investment return and loss ratio. In case 3, those 

scenarios that exhibit an extreme loss ratio in addition to very 

poor investment returns are summarized. Case 3' aims to 

improve those scenarios, in which the extreme loss ratio is 

the decisive factor for the ruin, not those scenarios that 

display unfavorable trends on the capital market. 

Table 4. Case groups of the clustering variables. 

Case 1 1' 2 2' 3 3' 

r1 extremely negative negative extremely negative negative strongly negative normally as expected 

r2 extremely negative negative positive closed to null strongly negative normally as expected 

LR increased increased increased high extreme extreme 

r1: high-risk investment return; r2: low-risk investment return; LR: loss ratio. 

The categorization of the poor scenarios into the six case 

groups (exemplary without correlation, using the Gauss and 

the Clayton copula) and the corresponding case mean values 

of the risk factors are shown in Figure 2. If only the 100 

worst scenarios are taken into account in the case without 

correlation, then approximately 40% of the scenarios can be 

attributed to the cases characterized by extremely negative 

returns for both investments (see cases 1 and 1') and to the 

cases in which the high-risk investment returns resulted in a 

large loss (see cases 2 and 2'). Furthermore, the extreme loss 

ratio is the deciding factor (see case 3') in 16% of the 

scenarios. The distribution over the case groups is more 

balanced when a higher number of scenarios is included. In 

particular, the increase in case 3', characterized primarily by a 

high loss ratio, is accompanied by a decrease in the cases of 

extremely negatively high-risk investment returns (see cases 

1 and 2'). Case 3, with very negative trends across all three 

risk factors, does not occur because no correlations between 

the risk factors are modeled. 

The case group distribution when the Gauss copula is used 

is shown in the middle of Figure 2. Of the 100 worst 

scenarios, 84% of the scenarios correspond to case 1 and 16% 

correspond to case 3. The other cases do not occur at all. 

Once again, the proportions change depending on the number 

of considered scenarios. The distribution is more adjusted to 

the independent case when a higher number of scenarios are 

taken into the consideration. The frequency with which the 

case groups are represented differs from that with no 

correlation owing to the linear dependencies included in the 

Gauss copula. Therefore, unfavorable developments of all of 

the risk factors are more often due to the choice of the 

correlations. The poor scenarios characterized by high loss 

ratios dominate when considering a large data base. 

Extremely negative investment returns clearly gain 

significance when a reduced data base is considered. 

This tendency is still clearly recognizable when the lower 

tail dependence Clayton copula is used (see Figure 2, right 

hand panel). Almost all of the worst possible scenarios are 

attributed to case 1 (94% among the 100 worst scenarios and 

76% among the 500 worst scenarios). The number of 

scenarios that are attributed to the other cases is higher when 

a larger number of poor scenarios are considered implying a 

gradual decrease in the occurrence of case 1; however, case 1 

remains dominant. 

An overview of the risk factors (return of the investment 

portfolio, loss ratio) corresponding to case group 1 for all of 

the dependence structures is shown in Figure 3. In the left 

diagram, the factors are the means of the scenarios 

corresponding to case 1 for the data base, including the 100 

worst scenarios. The loss ratio is plotted on the x-axis, and 

the portfolio return is plotted on the y-axis. The portfolio 

return is calculated by weighting the returns of the high-risk 

and low-risk investments. The loss ratio is above 105% for 

all of the dependency structures, and the return of the 

investment portfolio is below -13% due to the extremely 

negative returns of the high-risk and low-risk investments. A 

loss ratio of 110.74% and a portfolio return of -13.66% are 

obtained when independence is assumed. The stress levels of 

the individual balance sheet items are strongly affected by the 

correlation assumptions. Depending on the copula type, the 

loss ratio changes by -4.43% (from 110.74% to 105.83% 

using the survival Clayton copula) to 10.80% (from 110.74% 

to 122.70% using the survival Gauss copula) and the 

portfolio return decreases by 7.65% (from -13.66% to -14.71 

using the Frank copula) up to 76.06% (from -13.66% to -

24.05% using the survival Gumbel copula). In the stress 
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situation, the indication employing lower tail dependence 

copulas (t, Clayton and survival Gumbel copula) is 

significantly stronger than the indication employing copulas 

exhibiting no tail dependence (Gauss and Frank copula) and 

upper tail dependence copulas (Gumbel and survival Clayton 

copula). 

The diagram on the right hand side of Figure 3 presents an 

overview of the risk factors corresponding to case group 1 for 

a specified set of the 100, 500 or 2,500 worst scenarios, from 

right to left in the diagram. When the 100 (first point from 

the right for each different type of dependency structure), 500 

(second point from the right) or 2,500 (third point from the 

right) worst scenarios are considered, the following two 

effects are apparent. On the one hand, the forms of the stress 

scenarios are reduced for an increasing number of considered 

scenarios. On the other hand, the forms of the stress scenarios 

for different dependence structures become increasingly 

uniform when the number of considered scenarios increases. 

Note that in the cases using the upper tail dependence 

Gumbel or survival Clayton copula, case 1 does not occur in 

a set of the 2,500 worst scenarios. The reason for this 

observation is that the cluster within the set of 2,500 

scenarios is attributed to the softer case 1' because its 

attributes are less pronounced compared to its attributes 

within a smaller set of scenarios. 

 

r1: high-risk investment return; r2: low-risk investment return; LR: loss ratio. 

Figure 2. Distributions of the case groups and corresponding means of the risk factors. 
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 rp: return of the investment portfolio; LR: loss ratio.  

Figure 3. General survey of the risk factors for case group 1. 

The left side of Figure 4 contains an overview of the risk 

factors corresponding to case group 2, based on a population 

of the 100 worst scenarios, for all of the different dependency 

structures. Case 2 is not represented in the case of the Gauss, 

survival Gumbel, Clayton or t copula, primarily due to the 

fact that the scenarios in which lower tail dependence is 

modeled are predominantly assigned to case 1 because of the 

simultaneous extreme unfavorable attributes of the risk 

factors. In the case of the Gauss copula, in which the 

(random) risk factors are linearly dependent, negative 

influences (as well as other influences) are strengthened. The 

comparison of the remaining dependence structures shows 

relatively small impacts on the loss ratio and portfolio return. 

In the case of independence, the loss ratio is 114.01% and the 

portfolio return is -10.87%. The loss ratio increases from 

0.84% to 4.26%, depending on the copula type, while the 

portfolio return changes by -6.92% to 5.61%. 

 

 rp: return of the investment portfolio; LR: loss ratio.  

Figure 4. General survey of the risk factors for case group 2. 

When the analysis accounts for the 500 or 2,500 worst 

scenarios (see Figure 4, right hand panel) the forms of the 

stress scenarios within a given dependence structure and the 

differences in the forms of the stress scenarios between 

different dependence structures weaken. However, the 

additional points from the t and Gauss copula deviate slightly 

from the overall picture, and case 2 is still not represented 

when using the survival Gumbel or the Clayton copula. 

The overview is omitted for the case groups 1' and 2' 

because these overviews lead no new significant findings. In 

these cases, both the indication in the stress situation and the 

weakening of the risk factors are smaller than those in cases 

1 and 2 due to the class definition. 

The overview of the risk factors for case group 3 is shown 

in Figure 5. The simultaneous occurrence of a very negative 

investment portfolio and a very high loss ratio is a 

characteristic of this case. This case can be represented only 

by lower tail dependence copulas and the Gauss copula 

because the lower tail dependence copulas can account for 

the dependencies that occur during extreme events. The risk 

factors display a large variation between the different copulas. 

For example, for the worst 100 scenarios, the survival 

Gumbel copula leads to a loss ratio of 181.99 % and a 

portfolio return of -26.65%, whereas the loss ratio is 126.91% 

and the portfolio return is -16.18% for the t copula. Moreover, 

the differences remain even when a larger number of worst 
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scenarios is considered because the number of scenarios 

attributed to case 3 is quite small, which leads to a high 

variability between different dependence structures. 

 

rp: return of the investment portfolio; LR: loss ratio.  

Figure 5. General survey of the risk factors for case group 3. 

Figure 6 illustrates the risk factors for case group 3' for the 

various correlation assumptions. The returns of the 

investment portfolio are generally positive (with one 

exception) but typically fall below the expected value of 7%. 

The range of loss ratios reaches nearly 100%. In particular, 

for the 100 worst scenarios, the loss ratio is extremely high 

under the lower tail dependence survival Gumbel copula 

(181.61%) and upper tail dependence survival Clayton 

copula (190.52%). Increasing the basis enables the loss ratios 

for the various dependence structures to converge relatively 

quickly and thoroughly, and the extreme deviations disappear. 

 

 rp: return of the investment portfolio; LR: loss ratio.  

Figure 6. General survey of the risk factors for case group 3’. 

In the approach taken in this paper, the six clusters for 

each dependence structure and the considered set of poor 

scenarios are defined to be the stress scenarios. The stress 

scenarios can be very different in the form and structure of 

the risk factors. Finally, note that the true worst case 

scenarios are obtained under the assumption of lower tail 

dependence, for example, using the Clayton copula. The 

deduction of the correlation should be undertaken with the 

aim of obtaining a worst case scenario because the limited 

data available to insurance companies render the 

determination of the dependence difficult. 

5. Conclusions 

In this paper, the development of stress scenarios for stress 

testing using DFA modeling is investigated. Selected poor 

scenarios, which arise when the dependence structure is 

modeled using various copulas, are considered. This 

approach accounts for the possible correlations between the 

various assets and liabilities in the stress case. This study 

focuses on eight different implementations of the dependency 

relationship. 

The analysis leads to three main findings, each concerning 

the risk management procedures of the insurance company. 

First, a systematic method is introduced for generating stress 

scenarios specific to the company and current economic 

environment using a DFA model. The identified stress 

scenarios are plausible, rigorous and comprehensive because 

the company-specific model reflects the actual risk situation 

of the company. In practice, the construction of simulation 

models with adequate functionality in the boundary areas is 

an important challenge. That particularly means the correct 
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modeling of the maximum loss for each individual risk 

position as well as the maximum loss for the entire risk 

profile in consideration of non-linear dependencies. If a DFA 

model is available, then the new method does not require any 

additional resources, leading to widespread practical 

implementation. 

Second, as demonstrated by the study of the critical 

scenarios, non-linear dependencies strongly influence the 

severity of the stress. Lower tail dependence copulas such as 

the Clayton and t copulas provide significantly stronger 

indications in the stress situation, as several risk factors are 

affected simultaneously. Particularly in the derivation of 

extremely severe scenarios, the modeling of asymmetric non-

linear dependencies therefore appears to be relevant. This 

result is of special importance for regulators and rating 

agencies, as current company models typically model only 

linear correlations or non-linear dependencies employing the 

Gauss copula. In addition, the stress tests currently employed 

by insurers use scenarios related to selected individual risk 

factors rather than considering all of the risk factors that are 

related to the solvency of the insurer simultaneously. 

Third, different quantities of poor scenarios are considered, 

and it turns out that the number of scenarios has a strong 

impact on the form and structure of the risk factors. For a 

given individual dependence structure, the stress scenarios 

within each case group exhibit a distinct weakening when the 

number of considered poor scenarios increases. Furthermore, 

the stress scenarios for a given case group clearly converge 

across different dependence structures. 

The implications of these findings are multifaceted. The 

work of the staff department is immediately affected. This 

paper therefore presents an effective approach to systematic 

searching for objective worst case scenarios. The major 

problem with current stress tests is that they employ hand-

picked scenarios, which provide deceptive security. The 

results of these tests are often misinterpreted because the 

tests consider implausible scenarios rather than the scenarios 

that could actually threaten the existence of the company. 

The derivation of stress scenarios from DFA models avoids 

this problem. The risk management process should therefore 

be complemented by adverse outcomes scenarios determined 

using lower tail dependence copulas. 

More broadly, the concepts covered in this paper can 

inform discussions on general business principals, such as the 

strategy of the management and the rewarding of the 

management for their successes. For example, negative 

consequences must be considered when intending large 

rewards for the realization of good scenarios. Based on game 

theory, the management designs its work to maximize the 

expected profit, that is, the product of the profit and its 

probability. This strategy increases the variance of the 

financial results and thereby increases the probability of high 

losses. This effect must be eliminated for the rewarding of 

the management which requires proving in a model that 

higher profits are not linked with increased stress scenarios. 
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Appendix 

Table 5. Balance sheet ratios and market parameters of the application study. 

Parameter Symbol Initial value at t = 0 

Equity capital at the end of period t ECt €75 million 

Portion invested in high-risk investments in period t αt-1 0.40 

Tax rate tr 0.25 

Risk free return rf 0.03 

Table 6. Premium and costs of the application study. 

Parameter Symbol Initial value at t = 0 

Premium income in period t Pt €200 million 

Underwriting market volume MV €1,000 million 

Market growth i 0.03 

Company's underwriting market share in period t βt-1 0.02 

Premium rate level in period t Πt 1 

Autoregressive process parameter for lag 0 a0 1.191 

Autoregressive process parameter for lag 1 a1 0.879 

Autoregressive process parameter for lag 2 a2 -0.406 

Consumer response function crt-1 1 

Upfront expenses linearly depending on the written market volume γ 0.05 

Claim settlement costs as portion of claims δ 0.05 
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Table 7. Claim and return distributions of the application study. 

Parameter Symbol Initial value at t = 0 

Log-normal non-catastrophic claims as portion underwriting market share Cncat  

Mean claims E(Cncat) €170 million 

Standard deviation of claims σ(Cncat) €17 million 

Pareto distributed catastrophic claims Ccat  

Mean claims E(Cncat) €0.5 million 

Dispersion parameter D(Cncat) 4.5 

Normally distributed high-risk investment return in period t r1t  

Mean return E(r1t) 0.1 

Standard deviation of return σ(r1t) 0.2 

Normally distributed low-risk investment return in period t r2t  

Mean return E(r2t) 0.05 

Standard deviation of return σ(r2t) 0.05 

Table 8. Correlations of the application study. 

Parameter Symbol Initial value at t = 0 

Kendall's rank correlation between high-risk and low-risk investments ρτ1 0.2 

Kendall's rank correlation between non-catastrophic and catastrophic losses ρτ2 0.2 

Kendall's rank correlation between assets and liabilities ρτ1 -0.1 

Table 9. Dependency properties of the considered elliptical copulas [18]. 

Copula Tail Dependence Kendall's Tau ρτ Parameter λu λl 

Gauss none 
2
d
arcsin(j) ∣∣j∣∣ ≤ 1 0 0 

tν upper and lower 
2
d arcsin(j) ∣∣j∣∣ ≤ 1 2�l̅_�(√n + 1o1 − jo1 + j) 2�l̅_�(√n + 1o1 − jo1 + j) 

Table 10. Dependency properties of the considered hierarchical Archimedean copulas (HACs) with completely montone generators and corresponding 

parameter ranges [18,37]. 

Copula 
Tail 

Dependence 
Generator pq(r) Kendall's Tau ρτi 

Parameter, 

(ps�s ○ pt�s)u c.m. 
λu λl 

Gumbel upper exp{−&� yz⁄ } 1 − 1
|} |� ≤ |�, |}~[1,∞) 2 − 2 �yz 0 

Survival 

Gumbel 
lower via Gumbel 1 − 1

|} |� ≤ |�, |}~[1,∞) 0 2 − 2 �yz 
Clayton lower (|}& + 1)�� yz⁄  

|}
|} + 2 |� ≤ |�, |}~(0,∞) 0 2��yz 

Survival 
Clayton 

upper via Clayton 
|}

|} + 2 |� ≤ |�, |}~(0,∞) 2��yz 0 

Frank none − 1
|} ln{�

�2(��yz − 1) + 1} 1 − 4|}��(1 − 1
|}�

�
exp(�) − 1

yz

4
��) |� ≤ |�, |}~(0,∞) 0 0 
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