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Abstract: Numerical evaluations of soliton-soliton and soliton-to-bottom interaction have many applications in various fields. 

On the other hand, Generalized Integral Representation Method (GIRM) is known as a convenient numerical method for solving 

Initial and Boundary Value Problem of differential equations such as advective diffusion. In this work, we apply one-step GIRM 

to numerical evaluations of propagation of a single soliton, soliton-to-soliton interaction and soliton-to-bottom interaction. 

Firstly, in case of a single soliton, the bottom is considered to be constant in order to understand the behavior of the soliton 

propagation as it travels in the middle of the sea. Next, in case of soliton-to-bottom, we study behavior of a single soliton 

propagation when the bottom has different geometries. Finally, we evaluate interaction of two different i.e., big and small solitons. 

To carry out with the studies, we derive and implement GIRM to numerically solve the Korteweg-de Vries (KdV) equation. In 

order to verify the theory, numerical experiments are conducted and accurate approximate solutions are obtained in each case of 

the soliton interactions. 

Keywords: Korteweg-de Vries (KdV) equation, Single Soliton, Soliton-to-Soliton interaction, Soliton-to-Bottom interaction, 

Numerical Evaluation, Generalized Integral Representation Method (GIRM) 

 

1. Introduction 

The propagation of solitary waves has many applications in 

various fields in particular, in tsunami studies. Solitary waves 

or solitons are propagating through a certain medium with 

constant velocity and describe a variety of nonlinear wave 

phenomena in one dimension. This phenomenon was first 

observed, described and reproduced by J.S. Russell [1]. 

It is well-known that the nonlinear wave equation of 

Korteweg and de Vries (KdV) [2] with the appropriate initial 

conditions admits solitons as its solutions. A modified version 

of the KdV equation with the variable-depth is studied in Ref 

[3]. Some derivations of the variable-depth KdV equation that 

allow a bottom profile are discussed in Ref [3] and [5]. 

Another approach, spectral and pseudo-spectral numerical 

schemes for the KdV equation are discussed in Ref. [4]. 

In this study, we develop and implement a high precision 

numerical scheme based on GIRM, in order to study and 

evaluate a single soliton propagation, soliton-to-bottom and 

soliton-to-soliton interactions. GIRM is known as a 

convenient alternative method for solving Initial and 

Boundary Value Problem of differential equations such as 

advective diffusion. In Ref. [6], GIRM is applied to one- and 

two-dimensional diffusion problems and two-dimensional 

Burgers’ equation. It is also shown that the determination of a 

fundamental solution for GIRM is always possible in advance. 

Effects of Generalized Fundamental Solution (GFS) on GIRM 

is discussed in Ref. [7]. Further, GIRM is applied to fluid 

dynamic motion of gas in Ref. [8] and to tidal wave 

propagation in Ref [9] in order to obtain the accurate 

numerical solutions. Full computer codes of One and 

Two-step GIRMs written in widely used computational 

languages such as Matlab, C, and FORTRAN are given in Ref 

[10]. 
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2. Theory of 1-Step GIRM 

2.1. KdV Equation 

Let x  and t  be the coordinate and time ( , )x tη  is the 

surface elevation. The Kortweg-de Vries or KdV equation is 

given by 
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where h  and 
0c  are the depth of water and speed of the 

linear wave, respectively. KdV equation was obtained under 

the assumption that the water depth h  is constant. However, 

if the water depth changes slowly, KdV equation could reflect 

this change. Hence, we consider h  and 
0c  as functions of x  

and t  i.e. ( , )h h x t=  and 
0 0 ( , )c c x t= . The linear wave speed 

0 ( , )c x t  is given by 

0 ( , ) ( , )c x t gh x t=          (3) 

with g  is the gravitational acceleration. If we rewrite Eq. (1) 

in a more general form, we have 
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In Eq. (4), diffusion term 2 2( , ) ( , )x t x t xκ η∂ ∂  is added, 

where κ  is the diffusion coefficient. The wave form and the 

speed of a soliton obtained analytically are given by 
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2.2. One-Step GIRM for KdV Equation 

First, we derive 1-step Generalized Integral Representation 

(GIR) for Eq. (4). Since KdV equation expresses a wave 

traveling to the positive direction of x , we consider it in the 

region 0 x L< < , where L  is large enough. We also assume 

function η  and its derivatives tend to zero, as x  tends to 0  

and L . 

Multiplying both sides of Eq. (4) by function ( , )G x ξɶ  of x  

and ξ , and integrating over 0 x L< < , we obtain 
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Next, transforming all the spatial derivatives of η  in Eq. (7) 

and taking into account the boundary conditions, yield 
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Finally, rearranging and exchanging variables x  and ξ , in 

Eq. (8), we have 
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where ( , )G x ξɶ  is a Generalized Fundamental Solution (GFS) 

chosen properly. The determination of a fundamental solution 

for GIRM is always possible in advance [6-10]. In our case, 

we take the Gaussian GFS: 
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Eq. (9) is a GIR of Eq. (4). This integral representation is 

applied to numerical solution of Eq. (4). If ( , )x tη  is known in 

0 x L≤ ≤ , then Eq. (9) is an integral equation with unknowns 

( , )x t tη∂ ∂  in 0 x L< < , where ( , )G x ξɶ  is the kernel function of 

the integral equation. Namely, we can obtain ( , )x tη  

numerically, if we use, for instance, the following procedure: 

Let ( , )x tη  be known at time t  →   

Obtain ( , )x t tη∂ ∂  from Eq. (9) →  

Then ( , ) ( , ) ( , )x t dt x t dt x t tη η η+ = + ∂ ∂  →  

Add dt  to t  →  Repeat process.           (11) 

In the present paper, an iteration is used to obtain 

( , )x t dt tη∂ + ∂  (→ Appendix A). 
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3. Numerical Method and Results of 

1-Step GIRM 

 

Figure 1. Numerical solutions of propagation of a single soliton (a) by 

Runge-Kutta method, (b) by 1-step GIRM, where N=80, 120, 160 (from top to 

bottom). 

In numerical experiments, we take for simplicity, the 

coefficients 
0( , )c x t , ( , )Nk x t , ( , )Dk x t  and ( , )x tκ  to change 

slowly with respect to x . In this case, Eq. (9) would be 

approximated by 
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To begin with, we introduce a uniform mesh as follows:  

dx d L Nξ= = , ( 0.5)i ix i dxξ= = + , 0,1, , 1i N= −… , nt ndt= , 
0, 1,n = …    (13) 

and 
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We approximate each term in Eq. (12) as follows: 
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Hence Eq. (12) can be discretized as  
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Eq. (16) is satisfied at the points 
0 1 1, , , Nx x x x −= ⋯  and 

the unknowns are [ ]( )n

j
tη∂ ∂ , 0,1, , 1j N= −… . Hence, we have 

N equations for N unknowns.  

3.1. Propagation of a Single Soliton 

First, we numerically evaluate propagation of a single 

soliton as if it moves in an infinite open sea. Numerical 

experiment is conducted straightforward by using Eq. (16) 

along with Eq. (17a) and Eq. (17b). For comparison, we also 

evaluate it by Finite Difference Method using second order 

Runge-Kutta scheme. Numerical results are shown in Fig. 1. 

The accuracy of the numerical results by 1-step GIRM using 

implicit time evolution is high. Values of the parameters used 

in the numerical experiments are: 

9.8g = , 
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We provide Matlab code for propagation of a single soliton 

in Appendix A. 

3.2. Soliton-to-Soliton Interaction 

We consider an interaction of big and small solitons. From 

Eq. (6), the big one moves faster than the smaller one. Hence, 

the big one catches up the small one. We introduce a frame 

moving with mean speed of the individual solitons: 
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Therefore, a GIR of Eq. (20) is 

( )
0

0

2

3
0

3

2

2

( , )
( , , )

( , ) ( , )
( , )

( , ) ( , )1
( , )

2

( , ) ( , )
( , )

( , ) ( , )
( , )

L

N

L

D

t
x t d

t

c t U x
t

k t x
t

d
k t x

t

t x
t

η ξ η ξ ξ

ξ η ξ
η ξ

ξ
ξ η ξ η ξ

ξ
ξ

ξ η ξ η ξ
ξ

κ ξ η ξ η ξ
ξ

∂ =
∂

 ∂ −
+ ∂ 

 ∂
+ 

∂ 
 ∂ −
 ∂
 

∂ 
 ∂ 

∫

∫

ɶ

ɶ

ɶ

ɶ

ɶ

    (21) 

with 

03

2
N

c
k

h
=  and 

2
0

6
D

c h
k =               (22) 

Fig. 2 shows the interaction of two solitons calculated by 

1-Step GIRM. Both solitons move to the right and the speed of 

the bigger one is faster than the speed of the small one (see Eq. 

(6)). The calculation was conducted in a frame moving with 

mean speed of the individual solitons. The accuracy of the 

numerical results obtained by 1-step GIRM is very high. 

Initial condition is given by 
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and values of the parameters are 

9.8g = , 1 0.5η = , 2 0.125η = , 1h = , 64L = , 120N = , dx L N= , 

0.004dt = , 0.75dxγ = , 20000T dt= , 0 3.130495c = , 1 3.913119c = , 

2 3.326151c = , 3.619635U = ., (24) 

 

Figure 2. Solution plot of interaction of big and small solitons (by 1-step 

GIRM). 

3.3. Soliton-to-Bottom Interaction 

We consider an interaction of a soliton to the bottom with 

three different geometries: bottom geometry 1. 
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Values of parameters used in the experiments are 

9.8g = , 
0 0.25η = , 

0 1h = , 128L = , 160N = , dx L N= , 0.004dt = , 

6000T dt= , 0.75dxγ =                (27a) 

for bottom geometries 1 and 2 and 

9.8g = , 
0 0.1η = , 

0 1h = , 60L= , 80N = , dx L N= , 0.004dt = , 

3000T dt= , 0.75dxγ =                (27b) 

for bottom geometry 3, respectively.  

Interactions of a single soliton to the bottom with different 

geometries are shown in Fig. 3. The tendency of the numerical 

results by 1-step GIRM seems reasonable. 

 

Figure 3. Solution plots of interaction of soliton-to-bottom with different 

bottom geometries: bottom geometry 1, 2, and 3 (from top to bottom). 

4. Conclusion 

We developed an accurate numerical scheme based on 

GIRM for solitary wave phenomena including a single 

soliton propagation, soliton-to-bottom interaction and 

soliton-to-soliton interaction. In case of a single soliton, the 

bottom is considered constant in order to understand the 

behavior of the soliton propagation as it travels in the middle 

of the sea. In case of soliton-to-bottom interaction, we study 

behavior of a single soliton propagation when the bottom has 

different geometries. Finally, we evaluate interaction of two 

different i.e., big and small solitons. In order to verify the 

theory, numerical experiments are conducted and accurate 

approximate solutions are obtained in admissible time in each 

case of the soliton interactions.  

Appendix A. Matlab Code for Propagation of a Single Soliton 

function single_soliton_GIRM ( ) 

% Solves single soliton propagation by using 1-step GIRM. 

N = 80;                       % number of mesh points   

eta0 = 0.25;                 % initial wave  

dt = 0.004;                   % time step 

T = 2000;                     % total time 

L = 64.0;                     % length of region 
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dx = L / N;                   % mesh step 

Titvl = round(T/5);         % interval for plotting 

g = 9.8;                      % gravity constant 

h = 1.0;                      % depth of water 

c0 = sqrt(g*h);              % velocity of linear wave   

c = c0*(1.0+eta0/2.0/h);   % velocity of wave  

kN = 3.0*c0/2.0/h;          % coefficient 1 

kD = c0*h*h/6.0;             % coefficient 2 

gam = 0.75*dx;               % scale of generalized fundamental solution 

NItg = 21;                    % number of division for integration 

    

    % Set mesh points 

    for i = 1:N 

        x(i) = (i-0.5)*dx; 

    end 

 

    % Set the initial condition 

    for i = 1:N 

        eta(i) = f_ini(x(i), L, eta0, h); 

    end  

 

    % Initialize plots 

    iplot = 1; 

    etaPlot(iplot,:) = eta; 

    tplot(iplot) = 0.0; 

 

    % Set system matrix A 

    for i = 1:N 

        for j = 1:N; 

            AMAT(i,j) = 0.0; 

            for p = 1:NItg 

                AMAT(i,j)= AMAT(i,j)+ETAchld(x(j)-dx/2.0+(p-0.5)*dx/NItg,x(i),gam)*dx/NItg; 

            end 

        end 

    end 

 

    for i = 1:N 

        for j = 1:N 

            if (i == j) 

                AMAT(i,N+j) = 1.0; 

            else 

                AMAT(i,N+j) = 0.0; 

            end 

        end 

    end 

 

    % Inverse of matrix A 

    A1 = inverse(AMAT, N); 

 

    % Main loop in time evolution 

    for t = 1:T 

 

        % First approximation 

        for i = 1:N 

            vec1(i) = 0.0; 

            for j = 1:N 

                vec1(i) = vec1(i) ... 
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                          + c0*ETAchld_x(x(j),x(i),gam)*eta(j)*dx ... 

                          + 0.5*kN*ETAchld_x(x(j),x(i),gam)*eta(j)*eta(j)*dx ... 

                          + kD*ETAchld_xxx(x(j),x(i),gam)*eta(j)*dx;                   

            end 

        end 

 

        for i = 1:N 

            Dt_eta(i) = 0.0; 

            for j = 1:N 

                Dt_eta(i) = Dt_eta(i) + A1(i,N+j)*vec1(j); 

            end 

        end 

 

        for i = 1:N 

            eta1(i) = eta(i) + Dt_eta(i)*dt; 

        end       

     

        % Second approximation 

        for i = 1:N 

            vec1(i) = 0.0; 

            for j = 1:N 

                vec1(i) = vec1(i) ... 

                          + c0*ETAchld_x(x(j),x(i),gam)*eta1(j)*dx ... 

                          + 0.5*kN*ETAchld_x(x(j),x(i),gam)*eta1(j)*eta1(j)*dx ... 

                          + kD*ETAchld_xxx(x(j),x(i),gam)*eta1(j)*dx;                   

            end 

        end       

      

        for i = 1:N 

            Dt_eta(i) = 0.0; 

            for j = 1:N 

                Dt_eta(i) = Dt_eta(i) + A1(i,N+j)*vec1(j); 

            end 

        end 

 

        for i = 1:N 

            eta(i) = eta(i) + Dt_eta(i)*dt; 

        end    

               

        % Save for plotting 

        if ( rem(t,Titvl) < 1 ) 

            iplot = iplot + 1; 

            etaPlot(iplot,:) = eta; 

            tplot(iplot) = t * dt; 

        end       

      

    end     

 

    % Plot solution 

    plot(x, etaPlot) 

end 

 

function A1 = inverse( AMAT, N) 

    % Compute inverse  

    N1 = N + N; 

    for k=1:N 
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        AKK = AMAT(k,k); 

        for j=k:N1 

            AMAT(k,j) = AMAT(k,j) / AKK; 

        end    

     

        for i=1:N 

            if (i == k) 

                continue; 

            end 

            AIK = AMAT(i,k); 

            for j=k:N1 

                AMAT(i,j) = AMAT(i,j) - AIK*AMAT(k,j); 

            end 

        end 

 

    end   

  

    A1 = AMAT; 

 

end 

 

function G = ETAchld( x, xsi, gam)   

    % Generalized fundamental solution (GFS) 

    G = 1./sqrt(2.*pi)/gam*exp(-(x-xsi)*(x-xsi)/2./gam/gam); 

end 

 

function Gx = ETAchld_x( x, xsi, gam) 

    % Set 1st derivative of GFS in x 

    Gx = -(x-xsi)/sqrt(2.*pi)/(gam^3)*exp(-(x-xsi)*(x-xsi)/2./gam/gam); 

end 

 

function Gxx = ETAchld_xx( x, xsi, gam) 

    % Set 2nd derivative of GFS in x 

    Gxx = -1./sqrt(2.*pi)/(gam^3)*exp(-(x-xsi)*(x-xsi)/2./gam/gam)... 

    + (x-xsi)*(x-xsi)/sqrt(2.*pi)/(gam^5)*exp(-(x-xsi)*(x-xsi)/2./gam/gam); 

end 

 

function Gxxx = ETAchld_xxx( x, xsi, gam) 

    % Set 3rd derivative of GFS in x 

    Gxxx = 3.*(x-xsi)/sqrt(2.*pi)/(gam^5)*exp(-(x-xsi)*(x-xsi)/2./gam/gam)... 

    - (x-xsi)*(x-xsi)*(x-xsi)/sqrt(2.*pi)/(gam^7)*exp(-(x-xsi)*(x-xsi)/2./gam/gam); 

end 

 

function f = f_ini( x, L, eta0, h) 

    % Set initial condition 

    f = eta0 * sech(sqrt(3.*eta0/4./h/h/h*(x-L/4.)) * sech(sqrt(3.*eta0/4./h/h/h*(x-L/4.)); 

end 
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