
 

Applied and Computational Mathematics 
2015; 4(3-1): 52-58 

Published online March 23, 2015 (http://www.sciencepublishinggroup.com/j/acm) 

doi: 10.11648/j.acm.s.2015040301.14 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

Application of the Generalized Integral Representation 
Method (GIRM) to Tidal Wave Propagation 

Hiroshi Isshiki 

IMA, Institute of Mathematical Analysis, Osaka, Japan 

Email address: 
isshiki@dab.hi-ho.ne.jp 

To cite this article: 
Hiroshi Isshiki. Application of the Generalized Integral Representation Method (GIRM) to Tidal Wave Propagation. Applied and 

Computational Mathematics. Special Issue: Integral Representation Method and its. Vol. 4, No. 3-1, 2015, pp. 52-58.  

doi: 10.11648/j.acm.s.2015040301.14 

 

Abstract: Integral Representation Method (IRM) is one of convenient methods to solve Initial and Boundary Value 

Problems (IBVP). It can be applied to irregular mesh, and the solution is stable and accurate. IRM is developed to Generalized 

Integral Representation Method (GIRM) to treat any kinds of problems including nonlinear problems. In GIRM, Generalized 

Fundamental Solution (GFS) is used instead of Fundamental Solution (FS) in IRM. We can use a variety of GFSs in GIRM. 

The effects of typical GFSs are investigated. In the present paper, an application of GIRM to tidal wave propagation is 

discussed, and the time evolution involves the second order time derivatives. An explicit time evolution is used successfully in 

the present paper. 
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1. Introduction 

Integral Representation Method (IRM) [1-3] is one of 

convenient methods to solve Initial and Boundary Value 

Problems (IBVP). It can be applied to irregular mesh, and the 

solution is stable and accurate. IRM was originally 

developed to solve linear boundary value problems, and the 

Fundamental Solution (FS) of the original differential 

equation plays a major role in IRM. IRM is developed to 

Generalized Integral Representation Method (GIRM) [4-8] 

to treat any kinds of problems including nonlinear problems. 

GIRM uses Generalized Fundamental Solution (GFS). GFS 

is not required to satisfy the differential equation of the 

original problem. We can use various GFSs for an individual 

problem. It is very important to know the characteristics of 

each GFS. 

In the present paper, an application of GIRM to tidal wave 

propagation is discussed. In this problem, the time evolution 

involves the second order time derivatives. 

2. Initial and Boundary Value Problem 

(IBVP) 

2.1. Shallow Water Wave Problem 

In the present paper, a very simple tidal wave problem in 

horizontal space S  with boundary C  is discussed:  
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where ( , )x y=x  and t  are horizontal coordinates and time, 

respectively. ∇  and n∂ ∂  are operator nabla ( ),x y∂ ∂ ∂ ∂  

and outward normal derivative on C , respectively. ( , )tη x , 

( )h x  and g  are surface elevation, water depth and 

gravitational acceleration, respectively. ( )f x  and ( )g x  are 

given functions. 

2.2. 1-Step Generalized Integral Representation Method 

(1-Step GIRM) 

Let ( , )G x ξɶ  be a Generalized Fundamental Solution (GFS) 

such as [7,8] 
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From Eq. (1), we have 

( )

( )
( )

( )

2

2

2

2

2

2

( , )
0 ( ) ( , ) ( , )

( , )
( , )

( ) ( , ) ( , )

( ) ( , ) ( , )

( , )
( , )

( ) ( , ) ( , )

S

S

S

S

S

S

t
gh t G dS

t

t
G dS

t

gh G t dS

gh t G dS

t
G dS

t

gh G t dS

η η

η

η

η

η

η

η

 ∂= − ∇ ⋅ ∇ ∂ 

∂=
∂

− ∇ ⋅ ∇

+ ∇ ⋅∇

∂=
∂

− ∇ ⋅ ∇

+ ∇ ⋅

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

x

x

x

x

x

x

x x x

x

x x x

x x x

x

x x x

x

x
x x x ξ

x
x ξ

x x ξ x

x x x ξ

x
x ξ

x x ξ x

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

( )
( , ) ( ) ( , )

( , ) ( ) ( , )

S

S

t gh G dS

t gh G dSη

 ∇ 

− ∇ ⋅ ∇

∫∫

∫∫
x

x

x x

x x x

x x x ξ

x x x ξ

ɶ

ɶ

  (5) 

Rewriting Eq. (5), we obtain 
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Exchanging x  and ξ , we derive the General Integral 

Representation (GIR) of Eqs. (1)  
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Let ( )xδ  be Dirac’s delta function. If ( , )G∇
ξ

ξ xɶ  satisfies 

( )( ) ( , ) ( ) ( )gh G x yδ ξ δ η∇ ⋅ ∇ = − −
ξ ξ

ξ ξ xɶ ,       (8) 

the first integral on the right-hand side of Eq. (7) becomes 

( , )tη x . Hence, Eq. (7) becomes an integral representation of 

( , )tη x . 

If ( , )x tη  at internal point (IP) is known and ( , )x tη  or 

( , )x t nη∂ ∂  at boundary point (BP) is known from the 

boundary conditions, then the generalized integral 

representations are integral equations with 
22 ( , )x t tη∂ ∂  the 

unknown variables at IP and ( , )x t nη∂ ∂  or ( , )x tη  the 

unknown variables at BP. We obtain ( , )x t dtη +  at IP from 
2 2( , ) ( , ) ( , )x t dt t x t t dt x t tη η η∂ + ∂ = ∂ ∂ + ∂ ∂  and 

( , ) ( , ) ( , )x t dt x t dt x t dt tη η η+ = + ∂ + ∂ . If ( ,0)xη  and 

( ,0)x tη∂ ∂  on IP are known from the initial conditions, then 

we can solve IBVP using the GIR. The GIRs are equivalent to 

the differential equations. 

2.3. 2-Step Generalized Integral Representation Method 

(2-Step GIRM)  

First, we rewrite Eq. (1) as follows. 

(a) Non-uniformity equation: 

( , ) ( , )t tη= ∇θ x x .                (9) 

(b) Constitutive equation: 

( , ) ( ) ( , )t gh t=q x x θ x .             (10) 

(c) Equilibrium equation: 
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Rewriting Eq. (12), we have 
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where n  is the unit outward normal vector of the boundary 

C . Exchanging x  and ξ , we obtain 
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From Eq. (11), we have 
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Rewriting Eq. (15), we obtain 
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Exchanging x  and ξ  in Eq. (16), we derive 
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Equations (14) and (17) are GIRs of Eqs. (9) and (11), 

respectively.  

If ( , )tη x  at IP is known, then GIR given by Eq. (14) is an 

integral equation with ( , )tθ x  the unknown variable at IP and 

( , )tη x  the unknown variables at BP. These unknown 

variables are obtained solving the integral equation. ( , )tq x  at 

IP is obtained from Equation (10). Then, GIR given by Eq. (17) 

is an integral equation with 2 2( , )t tη∂ ∂x  the unknown 

variable at IP and ( , )tq x  the unknown variables at BP. These 

unknown variables are obtained solving the integral equation. 

We obtain ( , )t dt tη∂ + ∂x  and ( , )t dtη +x  at IP from 

2 2( , ) ( , ) ( , )t dt t t t dt t tη η η∂ + ∂ = ∂ ∂ + ∂ ∂x x x  and 

( , ) ( , ) ( , )t dt t dt t dt tη η η+ = + ∂ + ∂x x x , respectively. We 

repeat the procedure mentioned above at every time step. If 

( ,0)xη  and ( ,0)x tη∂ ∂  on IP are known from the initial 

conditions, then we can solve IBVP using GIRs. GIRs are 

equivalent to the differential equations.  

3. Numerical Results 

For simplicity, we focus on one-dimensional problem in 

region L x L− < < +  given by 
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We use four kinds of GFSs [8]:  
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(2) 2C  Continuous GFS [8-10]
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(3) C∞  Continuous GFS 
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3.1. Travelling of a Wave in Infinite One-Dimensional Space 

For this problem, we use One-Step GIRM. We rewrite Eq. 

(7) for one-dimensional case:  
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If we consider infinite one-dimensional space, L  is taken 

large enough, and we assume 
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The time evolution with time step dt  is given by 
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The initial value is specified as 
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The discretization of Eq. (27) is briefly discussed in 

Appendix A [7,8]. The solution of the Initial Boundary Value 

Problem (IBVP) is summarized as 

From Eq. (27), 
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from Eq. (28b), ( , ) ( , )t dt t t dtη η∂ + ∂ → +x x ; 

repeat.                                     (30) 

Parameters for numerical calculations are given below: 

2c gh= = ; 4L = ; 80N = ; 

2 0.1dx L N= = ; 0.001dt = ,           (31) 

where N  is the number of elements in the region 

L x L− < < . 

The exact solution is given in Fig. 1, and the numerical 

results are given in Fig. 2. The accurate results are obtained 

among numerical results using Harmonic, Exponential and 

Gaussian GFSs. The numerical result using Lucy GFS is not 

accurate enough.  

 

Figure 1. Exact solution of η(x,t) 

3.2. Reflection of a Wave by Walls at Boundaries 

For this problem, we use Two-Step GIRM. We rewrite Eqs. 
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The boundary values ( , )L tη +  and ( , )L tη −  are 

approximated, for example, by 
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And substituting the boundary condition (19), Eq. (33) 
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The same time evolution (28) and initial condition (29) are used. 

 

Harmonic GFS 

 

Exponential GFS (γγγγ=1) 

 

Lucy GFS (γγγγ=100) 

 

Gaussian GFS (γγγγ=0.85dx) 

Figure 2. Numerical results using various GFSs 

 

Harmonic GFS 

 

Exponential GFS (γ=1) 

 

Lucy GFS (γ=1) 

 

Gausian GFS (γ=0.75dx) 

Figure 3. Without reflection at boundaries 
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Figure 4. With reflection at boundaries 

The discretization of Eqs. (35) and (36) is discussed in Ref. 

[7,8]. The solution of the Initial Boundary Value Problem 

(IBVP) is summarized as 

From Eq. (35), ( , ) ( , )t tη →x θ x ; 

from (10), ( , ) ( , )t t→θ x q x ; 

from (36), 
2 2( , ) ( , )t t tη→ ∂ ∂q x x ; 

from Eq. (28a), 
2 2( , ) ( , )t t t dt tη η∂ ∂ → ∂ + ∂x x ; 

from Eq. (28b), ( , ) ( , )t dt t t dtη η∂ + ∂ → +x x ; 

repeat.                                    (37)  

For numerical calculations, same parameters given by Eq. 

(31) are used. The numerical results in Fig. 3 do not include 

reflection by walls, and the accurate results are obtained for all 

cases using Harmonic, exponential, Lucy and Gaussian GFSs. 

However, for cases involving reflection at walls as shown in 

Fig. 4, accurate numerical results are obtained only when 

Harmonic and Exponential GFSs are used. Small spurious 

oscillations are involved in numerical results using Lucy GFS. 

The numerical result using Gaussian GFS contains errors after 

reflection. This may correspond to our experience with 

respect to non-zero boundary values discussed in Ref. [8]. 

4. Conclusions 

A set of integral representations is obtained using a 

fundamental solution of a differential-type boundary value 

problem [1-3]. If the boundary conditions are substituted into 

the set of the integral representations, a set of integral 

equations is obtained. The unknown variables of the boundary 

value problem can be determined by solving the set of integral 

equations derived from the set of integral representations.  

Furthermore, we proposed a Generalized Integral 

Representation Method (GIRM) [4-8]. In GIRM, Generalized 

Fundamental Solution (GFS) is used. In the present paper, 

GIRM was applied to propagation of tidal wave. Unlike 

Integral Representation Method (IRM), we can use a variety 

of GFSs in GIRM. Four kinds of GFSs, namely Harmonic, 

Exponential, Lucy and Gaussian GFSs, were used. When the 

reflection of waves did not take place, all GFSs gave accurate 

numerical results. However, Lucy and Gaussian GFSs did not 

give reflected waves correctly enough. This may correspond 

to our experience with respect to non-zero boundary values 

discussed in Ref. [8].  

In case of wave propagation discussed in the present paper, 

the second order time derivatives appear in the time evolution. 

An explicit time evolution is used successfully in the present 

paper. 

 

Harmonic GFS 

 

Exponential GFS (γ=1) 

 

Lucy GFS (γ=1) 
 

Gausian GFS (γ=0.75dx) 
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Appendix A. Discretization of Eq. (27) 

The region L x L− < < +  is divided into N  intervals:  

2dx L N= ,                 (A1) 

( 0.5)
i i

x L i dxξ= = − + + , 0, 1, , 1i N= −⋯ ,     (A2) 

Equation (27) is discretized as follows: 
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.    (A3) 

The integrals in Eq. (A2) can be evaluated numerically. 
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