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Abstract: Integral Representation Method (IRM) is one of convenient methods to solve Initial and Boundary Value Problems
(IBVP). It can be applied to irregular mesh, and the solution is stable and accurate. However, it was originally developed for
linear equations with known fundamental solutions. In order to apply to general nonlinear equations, we must generalize the
method. In the present paper, a generalization of IRM (GIRM) is discussed and applied to specific problems and the numerical
solutions obtained. The numerical results are stable and accurate. The generalized method is called Generalized Integral
Representation Method (GIRM). Brief explanations on the relationships with other numerical methods are also given.
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1. Introduction

Integral Representation Method is one of convenient
methods to solve Initial and Boundary Value Problems (IBVP)
[1-3]. It can be applied to irregular mesh, and the solution is
stable and accurate. However, it was originally developed for
linear equations with known fundamental solutions. In order
to apply to general nonlinear equations, we must generalize
the method [4-6]. In IRM, the fundamental solution satisfying
a proper differential equation is sought based on our
knowledge of the differential equation. However, in
Generalized Integral Representation Method (GIRM), we
assume the proper fundamental solution in advance. Choice of
the fundamental solution may always be possible.

In the present paper, the generalization of IRM is discussed
not only from the theoretical viewpoint, but also the
computational aspects are also discussed. GIRM is applied
diffusion problems and Burgers’ equation. The numerical
results are stable and accurate.

In the present paper, IRM and GIRM are explained from
very basic level to advanced level, and the relationships with
other numerical methods such as Finite Difference Method
(FDM) and Collocation Method (CM) etc. are also clarified.

2. Preparation

As a basis of discussion, we discuss the solution of
one-dimensional Initial Boundary Value Problem (IBVP) of
one-dimensional diffusion problem in flow.

Let x and ¢ refer to the coordinate and time, respectively.
IBVP of one-dimensional diffusion in flow is given by

2
a_C + Ua_c =K 0°C
ot Ox ox?

+0 in -L<x<L & t>0, (1)

C=g_,(t)at x=-L & t>0
and C=g,(¢) at x=L & t>0, 2)
C=f(x) in —-L<x<L at t=0, 3)

where C(x,t), U, o(x,t) and k are the density of
substance, velocity of flow, source of substance and constant
of diffusion, respectively. The functions g,(t) (A=-L,L)
and f(x) give the boundary and initial values of the
density C(x,t), respectively.

A numerical solution of IBVP can be obtained by the
following procedure:

C(x,t) isknownat ¢ — obtain dC/dt from
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Eq. (1) — obtain C(x,t+dt) from
C(x+dt) = C(x,t)+dt[BC(x,1)/0t —

add dt to t — repeat. 4)
2.1. Finite Difference Method (FDM)

In Finite Difference Method (FDM), the differential
equation Eq. (1) is discretized directly using Differences.
We adopt a regular mesh or grid:

dx=2L/N, x,=-L+idx i=0,1,---, N, 5)
¢ =ndt n=0,1,- ©6)
Ci(") =C(x,t,), Ul.(") =0(x,t,). @)

The space derivatives are approximated using central
differences:

Z—f = j(c (x+dx,))=C(x—dx,t)).  (8a)
azg = %(C(x +dx,t) = 2C(x,t) + C(x —dx,1)). (8b)
Ox x

Then, we obtain an approximation of IBVP defined by Egs.
(1-3):

o)
{a_c} =——fem-cm)=Slen 200 sc)r o
ot |, 2dx x
for i=1,--,N-1 & n=1,---, ©)
Cé") :g—L(tn)9 C](\7) :gL(tn) fOr n :05 15'”’ (10)
c”=f(x) for i=1,---,N-1, (11)

where C!" =C(x,,t,), etc.

If we use Explicit Time Evolution (ETE), [OC/ Ot]ﬁ")
interpreted as

5] -ter-er

or C"*V -C"’)+[ac}(’1)dt. (12)
ot |,
C"*V is obtained by the following procedure:
C™ isknownat  — obtain [9C/0:]” from
Eq.(9) — obtain C"*" from [6C/6t]f.")
using Eq. (12) — add df to ¢ — repeat. (13)
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If we use Implicit Time Evolution (ITE), [6C/ Ot]ﬁ")
understood as

(n)
B_ﬂ =—lem-c) (14)

dt

and we substitute Eq. (14) into Eq. (9):

é(c;n) _ C,.‘”'“)

==Y (cm-cm)+

K
( ( ( (
2dx x> (C"*nl) -0 + Ci—nl))"' ;"

for i=1,---,N-1 & n=1,---, (15)

C™ is obtained by the following procedure:
C"™" isknownat t — obtain C™ solving

an algebraic equation Eq. (15) — add df to

t — repeat. (16)

FDM-ITE requires inversion of matrix.

FDM discretizes the differential equation into difference
equation. FDM is accurate if we use highly accurate difference
such as central difference, but FDM requires regular grid.
FDM-ETE does not require inversion of matrix. This is very
helpful to reduce computational time.

2.2. Mode Function Interpolation Method (MFIM)

The unknown function C(x,f) could be interpolated
before obtaining discretizing the equations. We may call this
method Mode Function Interpolation Method (MFIM).
Collocation Method (CM), Conventional Galerkin Method
(CGM) and Finite Element Method (FEM) etc., belong to
MFIM. CM and CGM apply MFIM in global region, and FEM
does in local regions.

In case of CM, we use MFIM of the following form:

M-1
C(x,1)=Y ¢, ()G, (x) in ~-L<x<L & 20,

H=0

(17

where G, (x) is a mode function. ¢, (¢) is the coefficient of

interpolation and corresponds to generalized coordinates in
analytical mechanics.
If we substitute Eq. (17) into Eq. (1-3), we obtain

Wl de, (1)

dt
e dG(x)

_UZ/I() + Z#()

in —-L<x<L & t>0,

G,(x)

u=0

(18)
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MZ_“IC#(I)G/I(—L) =g ,(¢t) at t>0
4=0

If N and M satisfy

N+12M, (30)
and zcﬂ (G, (L) =g, (1) at 1>0, (19) we can apply Least Square Method (LSM) to determine
H=0 CLn)(quoalau'aM_l)'
M- CM does not require regular mesh. If proper mode functions
Zcu(O)Gu(x) =f(x) in =L<x<L. (20)  are used, the accuracy is high.
4=0 If g_,(t)and g,(¢) satisfy
We can use a irregular mesh or grid in CM g.,()=0, g,()=0, (31)
Lo, Xy e Xy X L @0 we can make mode function G,(x) satisfy
t,=ndt n=0,1,-- (22)
G,(-L)=G,(L)=0 for u=0,1,---,M-1. (32)
(n) = (n) —
G =eultn), T a(x;t,) (23) Then, Egs. (24-26) are replaced by
The discretized equations of IBVP using CM are given by o T ge 1™
Z|:_:| Gy ('xi)
3] e el
o0 X,
mLdt, UZ de (x) i ,d°G (x) o™
dG(x) M dG(x) | 1=0 i
_UZ () +KY el +g"
H=0 for i=1,2,---,N-1 & n=1,--- (33)
for i=1,2,--,N-1 & n=12,---, 24) "
> VG, (x)= f(x,) for i=1,2 -1. (34)
M H=0
ZCZI)G//(_L) = g—L(tn) ’ ZCL")G#(L) = gL (tn)
H=0 K0 In this case, we can also apply ETE. [dc/ dt](")
for n=1,--- (25)  interpreted as

> VG, (x) = f(x,) for i=1,2,-
H=0

(n) (n)
L@ |2l s e o ) or (=i | LT g 35)
dt|, dt dt |,
If we use Implicit Time Evolution (ITE), [dc/ dt](") cf,”” is obtained by the following procedure
understood as
n - . n)
PRI ¢\ isknownat t — obtain [dc/dt]) from
] et -ar). @) o .
dr], dt Eq. (33) — obtain cf,” ' from [dc/dt]
we substitute Eq. (14) into Eq. (24): using Eq. 35) — add dt to t — repeat. (36)
S - e0)6, (x) :
gt e 3. Integral Representation Method (IRM)
- UZ w 4G (x) i d G (x) o™ Eq. (17) suggests us an integral representation of dependent
= gi variable:
for i=1,---,N-1 & n=1,---, (28) C(x,t)='|.OLG(x,{)c(f,t)d{
¢’ is obtained by the following procedure: in -L<x<L & t>0. (37)
;™" isknownat /=1 — obtain ¢’ from since

Eqs. (28)and (25) — add dt to t — repeat. (29)
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C(x,1)=Y ¢, (G, (x) = %Zc#(t)GH (x)dé
0 o , (38)

= D c(HIE.NG (. W E)dE = [ Gl Ee(E.1)dE
14=0
where
2L
dE =20 6, (0= c(UdED), Gyl) = 7Gx pdE) . (39

Multiplying a function G(x,&) of x and & on both side
of Eq. (1)

—0(x,t)
aC(x AN G ]
=[ +01(U0(x HG(x,&) - Kac(x D Gix 5)] dx
+[—UC(x,t)+ OC(;C ’)jaG(i‘() IxGx.8)
|2 G v 2O

o, 0 (Kc(x’t)aG(x,f)] [ XClr t)a G(x, {)]
Ox Ox

[UC(x HG(x,&) - KOC(x D Gx 5)}

x=-L

- I_LL o(x,t)G(x,&)dx
r 6C(x 1) OG( :$) gy

-L

=50 G, ) dx Uj Clx,)—2%2

—Kj C(x t)a G(x ) i

+U[C(x.0G(x, &),

~ [GC(x )

(6,6~ Clx r)aG(x 5)}

x=-L

- jLL o(x, )G (x, &) dx . (40)

Rewriting Eq. (40), we have

IL 0D G &)

-L a

aG(x &) 0’ G(x ) e

—Uj Clx,t)—22 g +Kj Clx,t)—222

From Integral Representation Method (IRM) to Generalized Integral Representation Method (GIRM)

-Ulcx.nGx, o),

_H{aC(x I)G( &)-Clx t)aG(x {)}
x x==L
+[L o(x.nG(xE)dx 41)
Exchanging x and ¢, we obtain
[ 280 6(g v ae
_ 0G(¢,x) 9°G(¢,x)
=UJ CEn =t ag k] CEn = s
~U[CEnGE N,
9C(4,1) 90G($,x) :
G c
+/{ 26 0En-CEn=2= L
+[L 0(&0G(& x)dé (42)

If G(x,§) is a fundamental solution of the differential

operator 82/0x*, G(x,&) is defined as

9°G(x,6) _

e =0(x=4), (43)
where J(x) is Dirac’s delta function:
[ 3()dx=1 and 8(x)=0 when x#0.  (44)
Specifically, G(x,&):
G(x,&)=G(&,x)=0.5|x=¢| (45)

is a fundamental solution of the differential operator 0 / ox’ .
Substituting Eq. (43) into Eq. (42) becomes

KE(x)C(x,t)
J'L 6C(£ 1)

-L

——G6(x.9)d¢

0G (¢, x)
0¢

U CEn 2R de - [ 0(EnGEdE

+U[cEnGE ],

—K["C(‘t D 60 - (£ 29

46
y eIl o

where
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1 when —L<x<L

&(x)=40.5 whenx=-L,L 47)
0 otherwise
Eq. (42) or (46) is an integral representation of Eq. (1).
(1) Steady solution
If there exists a steady solution:
}irEC(x,t) =C(x), }irga(x,t) =0(x),
}irgg—L(t):g—La }irEgL(t):gL (48)
we have from Eq. (46)
KE(x)C(x)
=-uf, O ag- [ o@aE e
+U[cGE 0,
dc(&) 9G(£,%) “49)
G C
{ ; (&x)=C)—F— o¢ L_L

If we substitute boundary condition into Eq. (46) and set x
to =L and L, we obtain

0G($,-L)
¢

+Ug,G(L,-L)- g_,G(-L,-L)]

g, =-U[ c@ D ae- [ oG -Dde

-k[C'(1)G(L,-L)- C'(-1)G(-L,-L)],
+k|g,G(L.~L) - g_,Gs(~L,~L)), (50)

0G(4,L)
0&

+Ulg,G(L, L)~ g_,G(-L, L)

g, =-U[ e B ag- [ o6 1ae

-k[C'()G(L,L)-C'(-L)G(-L,L)]

+k|g,Ge(L,L) - g, G, (-L,L)|, (51)

respectively. Egs. (49), (50) and (51) are algebraic equations
with unknowns C(x) in -L<x<L, C'(-L) and C'(L).
If we have U =0, then, Egs. (50) and (51) are algebraic
equations with unknowns C'(-L) and C'(L) .Hence, we can
determine C'(-L) and C'(L) solving Egs. (50) and (51).
This is the one-dimensional case of Boundary Element
Method (BEM). Substituting C'(=L) and C'(L) into Eq.
(49), we can obtain C(x) in —L<x<L.

(2) Unsteady solution

If we know C(x,t) in —L<x< L, Eq. (46) is an integral

equation with unknowns 0C(x,7)/0f in -L<x<L

>

C.(-L,t) and C (L,t), where G(x,¢) is the kernel function
of the integral equation.
We introduce, for example, a regular mesh:

dx=d&=2L/N, x, =& =-L+(i+0.5)dx

i=0,1,-, N-1, (52)

t,=ndt n=0,1,--, (53)

C" =C(x,t,), 0" =0(x,t,),

["—CT") _9CE,t)
ot a

(54a)
(54b)

We prepare for discretization of Eq. (46)
J‘L aC (5 t,)

-L

— =G, )dé
i sj+de'/20C E 0C(S,1,)

e g OOdE, (55)

j=0

Z[ 7

é=L

J.{/ +dé[2
¢j=dé/2

G(x,$)ds

{OC(f t )G( 5)}
0¢ =1 , (55b)

oF 0¢

[ o(&1,)G(x e
= Z [CIRCER TS

e (55¢)

Z o [ G (x, £)dE

§j=dé/2

[C(E, ) "Ggg ﬂ
F=-L

0G(x,L) _ ( )OG(x L)
& &1t o¢

where 9C(&),1,)/0t = Ce(&),t,) etc.
Eq. (46) can be discretized as

N-1 ()
> %] rw
=L or

_K{aC(L,tn) 6(L.x) - 2CCLL)
& &

(55d)
= gL (tn)

G(~L,x)

= KEWIC(rt,) U A, (x>+Za<n r,e)

Jj=0
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~Ulg, (t,)G(L,x) - g_, (1,)G(~L,x)]

9G(L.x) _ 9G(~L,x)
2. 56
|:L(tn) Y; ) —F— ¢ } (56)
where
M= [ Geode, A= 2D e (57)
The unknowns are [6C/0t](j") ( j=0,1,--,N—1 ),

0C(-L,t,)/0& and 0C(L,t,)/d¢ . Eq. (56) is satisfied at the
center points x = Xx,, X;, -+, Xy_, of elements and boundary
points x =0, L. Hence, we have N +2 equations for N +2

unknowns.
If we approximate 0C(-L,t,)/0¢ and C(L,t,)/0& by

0C(-L,t,)) _
— C(xy,t,)—C(-L,t))), 58
¥ d{( (3:1,)=C(-Lit,)),  (58a)
0C(+L,t)) _
— C(+L,t,)—-C , 58b
5 d{(( ) =C(xyast,))  (58b)
and satisfy Eq. (56) at the center points x = x,, x, -*+, xy_, of

elements, then we have N equations for N unknowns.

Although IRM is mathematically complex and requires
matrix inversion, but the accuracy of the numerical result is
high. It can be applied to irregular mesh. If the computer code
is properly written, the computational load may be
comparable with Finite element Method (FEM).

4. Generalized Integral Representation
Method (GIRM)

IRM is basically developed for a linear problem with a
known fundamental solution for the differential equation.
Hence, if we have an IBVP using a differential equation
different from Eq. (1), for example:

4
a—C:Ka§+ain —L<x<L & t>0, 59)
ot Ox
we must find first a fundamental solution satisfying
'G(x,
SO0 = ox-6) (60)

In order to apply IRM to any kinds of linear and nonlinear
problems, we must generalize the method. For the purpose, we
generalize the concept of the fundamental solution. We
replace Eq. (43) by

9°G(x,§)

e =0(x,4),

(61)

From Integral Representation Method (IRM) to Generalized Integral Representation Method (GIRM)

where & (x,&) canbe
O(x,&) 2 d(x=¢). (62)

G(x,¢)

properly, for example

=~ -1 (=&’

The function & (x,¢&) isnot Dirac’s delta function as in Eq.

is a generalized fundamental solution chosen

(63)

(43), but it is nothing but the second derivatives of (N;(x,f)
with respect to x.

Multiplying é(x,{) on both side of Eq. (1), we obtain
similar to Eq. (41):

J 6C(x I)G( &) dx UJ C(x, aG(x’{)dx
-L Ox
+KjL C(x, t)aLf’{)dx
B .
—U[C(x,t)é(x,f)]ﬁfl
o [GC(x D & - t)aG(x 5)}
+ fLa(x,t)é(x,{) dx . (64)
Exchanging x and ¢, we obtain
[, 280G mae=ul’ cie, r)aG(‘;’” dé
0°G(¢, X)
+Kj C(&, 1) ——=>22 2 dé
~vle@nGeEn),
AC(&1) ~ G(&, x)}
+K G(£,x)-C(S,1)
+ jLL O(E,NG (&, x)dE - (65)

This is a generalized integral representation of Eq. (1). This
integral representation is applied to numerical solution of
IBVP in the similar way as discussed for IRM. This numerical
method is called GIRM.

Numerical examples are given below. The initial condition
is doublet-like and given by

09(x—¢)
0¢

_09(x=¢)
Ox

_dd(x)

C(x,0)=——
(x,0) T

£20

£=0
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-1/dx* for i=N/2-1
or C =J+1/dx* for i=N/2
0 otherwise

(66)

We assume that L is big enough, and the boundary
condition is specified as

C(xL,t)=C(xL,t)=0. 67)
The exact solution is given by
0 1 (x-Ut)?
C(x,t)= ——{—exp(——
Ox | 2/ 7t 4ut
. (68)

1 x| — (x—Ut) t
2 e P 4vt vt
The parameters for numerical calculations are as follows:
L=4; N=160; dx=2L/8=0.05; y=0.75dx;

dt =0.0005; T =3000d¢; k=0.089; U=0,1. (69)

Numerical results are shown Figs. 1 and 2. Because of the
singular initial condition, we need very fine mesh. The
accuracy of the numerical results is very high. The numerical

results coincide with the exact ones.

5. Further Generalization of General
Integral Representation Method
(GIRM)

A further generalization of GIRM in one-dimensional case
is discussed below:

2 b
S R B e
in —-L<x<L & t>0. (70)
Rewriting Eq. (70), we have
g2 6% g %u
Ou
> Flx,t,u,8,8,,--,6,)= f(x,1). (72)

We introduce a generalized fundamental solution 6(x, &)

and the derivative 0N'1(x, &) with respectto x, for example

_ <x—£>2], (733)

(N;(x, &) :ﬁ/exp[ %

M:Sl(x,g), (73b)
Ox
We use the following formula:
O0LED G )
(74)
_ 6, (x.t)G(x,E) (x5 200 OG(x E)
ox O
Applying Eq. (74) to each of Eq. (71), we have
0= jL {Hn (x,1) —M}a(x,{)dx
L Ox
G(x, 618, (1) - 204D
—(* Ox d
ke 6G(x ) )
n- 1( t)
= [ GO, (x.0dx |6, (.G O], .
+[ 6,108 (v, E)d (75)
Rewriting Eq. (75), we obtain
[ 608, (enyax=-[" 6,,(x.03x. o
" (76)

o nGee| ™,

Exchanging x and &, we obtain a generalized integral
representation:

[ G, Enas=-] ,l(c‘t)é(fx)df

(7
<o, 06 )2,

Eq. (74) is the integral representation of Eq. (71).
The integral representation of Eq. (72) is obtained below.

Multiplying (N;(x,{) on both sides of Eq. (72) and integrating

in é(x,{) with respect to ¢, we have

Cx)

(a) Numerical solution
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—1t= 03

e t= 09
——t= 12
----t=15

Cx,b)

(b) Exact solution

Figure 1. Doublet-like initial density distribution (U=0).

—1t= 03

61 - --t= 0.6
--t= 09
——t=12
—=t=15

X0
(&)
24
44
-6 :
4 2 0 2 4
X
(a) Numerical solution
6 -
4
24
< O
(@]
-2
-4
-6

(b) Exact solution
Figure 2. Doublet-like initial density distribution (U=1).

0= J~ G( <c)au(xt)

+ [0 P tu(x,0.6,(x.0,6,(x.0),0++, 6, (x.0))G (x, €)dx

- [ F0G. . (78)
Exchanging x and &, we obtain a generalized integral
representation for Eq. (72):

0u(<‘ )

OJ'G(E) dé

From Integral Representation Method (IRM) to Generalized Integral Representation Method (GIRM)

[ F(E0u(E.0).6,(E0).8,(E.0). .0, (£.0)G(E.x) dE

- [ fEDGEx)dé. (79)

u(x,t) is obtained by the following procedure:
u(x,t) isknown — g(x,t) fromEq. (77)

n-1 (‘xﬂ t)

from Eq. (77) — Ou(x,t)/0¢t from Eq. (79) —

- Hz(x,t) fromEq. (77) —» ... -

u(x,t +dt) from Ou(x,t)/0t — repeat. (80)
6. Generalized Integral Representation
Method (GIRM) in Multi-Dimensional
Space
6.1. Application of GIRM to Diffusion in Flow
As a basis of discussion, we discuss the solution of Initial

Boundary Value Problem (IBVP) of N, -dimensional

diffusion in a flow.
If x, (i=1,2,-,
the diffusion equation in N, -dimension is

N,) and ¢ refer to the coordinates
and time,

expressed as

aC ac _ o C
+U,— =K
o Ox, Ox 0x;

+0. (81)

The summation convention is used for the repeated indices,
that is, U,0C/dx, =U,dC/dx, +---+U,, 0C/dxy, and

9°/ox,0x, =07 /ax; +---+09°/oxy, .

the density of substance, velocity vector of a given flow and
diffusion constant, respectively. Since it’s not difficult to
obtain two-dimensional expressions from three-dimensional
ones, we develop theory using three-dimensional expressions
below.
We rewrite the basic equation Eq. (81) as follows:
Non-uniformity equation:

C, U, and K refer to

_oc
] 82
T (82)
Constitutive equation:
g, =K. (83)
Equilibrium equation:
9€ ,p % - 04 (84)

at " Ox, Ox

i

We introduce Gaussian type generalized fundamental
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solution G(x &) withscale y, , (i=12,-

i

-, N,) [4,5], for
example:

- Nd 1
G(X,é) = u \/Z_—HVeXp[— lzyz

We obtain an integral representation of Eq. (82). From Eq.
(85), we have

aca(x D Gt = w ~C(x03,(x,8), (86)
where
908 _ 5(xz). (87)
Ox

i

Multiplying (N}(x,é) on the both sides of Eq. (82) and

integrating in region ¥ , we obtain
0C(x,t
o:m{m £) = ( )}G( &)dV,

AC(x,1)G(x,E)
ox, dv,

X

G(x,8)6,(x,1) -
=1l

+C(x,1)3,(x,8)

= m lé(x, £)8,(x,1) + C(x,0)J,(x, g)Jde _

-| LC(x,r)é(x,g)n”de . (88)
Rewriting Eq. (88), we have
[[| 608 xnar, =-[[[ cx.ndx.8)av,
+ jjs C(x,1)G(x,E)n,,dS, . (89)

in Eq. (89), we obtain a

generalized integral representation for Eq. (82):

[[] GexeaEnar, =-[[] cendeExar,

Exchanging x and &

+ jjs G(&X)C(E, D)y, dS, . (90)

A generalized integral representation of Eq. (84) is
obtained similarly. From Eq. (87), we have

[U « t)aC(x t)jG( 5= aU,.(x,t)c(;(x,t)G(x,g)
l xi
—Wcu,né(x,g) -U,(x,)C(x,1)0,(x,E) . (91a)

i

3g,(x,)G(x,8)
Ox

aq,(x t) ~

L2 G(x,8) = -¢,(x,03(x,8). (91b)

Multiplying é(x,e‘;) on the both sides of Eq. (84) and
integrating in region V', we obtain

Cof = dC(x,1) AC(x,1) . 0g.(x,1)
o_myc;(x,g){T+U,.(x,t) R }de

X

i i

6C(x ) v+ [[[ dU,(x,1))C(x,1)G(x, 3P
a l

- G

- j j j {wax,z)é(x,g) + U,.(x,r)C(x,z)&(x,g)}dV
Vv x’_

i} {%f"(m—q,(x,r)&(x@ v

=ll[¢ (X@)W v+ [[ Gx8)U(xHC(x,0)n, S,

-[1] {wcm)é(x,a) . U,-(x,r)C<x,z)5<x,a)}de
Vv x’_

+[[,6x&)q,(x0m dS, - [[] a.(x08x8)dV, . (92)

Rewriting Eq. (92), we have
6.0 %0
ot
=[] v xncen +q,xnlg e ar,

[ wé#:’t)C(x,t)a(X@)de

-[[GxeUxncn +gx 0l ds, . (93)

in Eq. (93), we obtain a

generalized integral representation of Eq. (84):

il Gen 2 ar,

Exchanging x and §

- J-”V [U,-(é,f)C(g,t) +qi(§7t)]5-,-(g, x)dVg
+[II alg"—f’%(é,r)é(a,x)dn

~[[,.6Ex[U,EnCEH +q,E N, ds, . (94)

Then, we can obtain C(x,?) numerically, if we use the
following process:
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C(x,t) isknown — 6(x,t) fromEq.(90) —
q,(x,t) fromEq. (83) — 0C(x,t)/0t from
Eq. (94) — C(x,t+dt) from 0C(x,t)/0t —
add dt to ¢

— repeat. 95)

Numerical examples in two-dimension are given below.
The initial condition is given by

e )iy )
cormeof A4

We assume that L is big enough, and the boundary condition
is specified as

(96)

C(xL,y,t)=C,(+L,y,1)=0,
C(x,£B,)=C, (x,£B,1) =0 . 97)

The exact solution is given by

Clx,p.1).

(x=&-U*+(y-n)’
477th. J l{ 4vt ]C(f n0yd&n -  (98)

In order to reduce spurious oscillation, it is effective to use
the finer mesh, but it invites serious increase of computation
time and memory. Addition of a numerical damping:

i+lj ij+l

—a[C;;) 8(c<" £C +C +C) +4C‘”))} (99)

to C? at every time step of the time evolution of C/7,
where @ is damping constant. Furthermore, if the

discontinuity of initial density distribution invites serious
errors, it is effective to replace C|)’ with a filtered value such

as

+C, +4C0).

ij-1

1 (C‘O) +CO
8

O+ C +CY, (100)

For the reduction of computation time, numerical integrals
including G and &, on the right hand sides of Eq. (90) and
(94) with respect to & are conducted in the neighborhood of
X:

M-IN-1

ZZI(i,j,m,n)= z Z 1@, j,m,n).

m=0n=0 li=m|<bdw |j—n|<bdw

(101)

The parameters for numerical calculations are as follows:
L=B=8; M=N=21,41; dx=dy=2L/M ,

Y. =V, =0.75dx; dt=0.005; T =500dt; k=0.1;

From Integral Representation Method (IRM) to Generalized Integral Representation Method (GIRM)

U=0,1; =0,0.01; ini_fil =on,off ; bdw=3.(102)

Numerical results are shown in Figs. 3 and 4. The accuracy
of the numerical results is very high. The numerical results
coincide with the exact ones. The spurious oscillation in Fig. 4
is reduced by increasing M and N, but it invites serious
increase of computation time and memory. As shown in Fig. 5,
the initial density filter and/or artificial damping given by Eqgs.
(99) and (100), respectively, can reduce the spurious
oscillation.

6.2. Application of GIRM to Burgers’ Equation

As a basis of discussion, we discuss the solution of
one-dimensional Initial Boundary Value Problem (IBVP) of
N, -dimensional Burgers’ equation.

If x,, (1=1,2,-,

and time, the fluid motion in N, -dimension is expressed as

N,) and t refer to the coordinates

au % 0’u

=v L 103
Ot “ 0x; 0x;0x; (103)
The summation convention is used for the repeated indices,
that is,  0%/dx,0x, =0%/ox} +---+0%/0x3 . w,
(i=12,---,N,) refers to the velocity vector. V is the

kinematic viscosity. Since it’s not difficult to obtain
two-dimensional expressions from three-dimensional ones,
we develop theory using three-dimensional expressions
below.
We rewrite the basic equations Eq. (103) as follows:
Non-uniformity equation:

Ou,
;= P (104)
X
Constitutive equation:
q,;,=-vE,;. (105)
Equilibrium equation:
Ou, aqi j
—+u g =—. 106
a7 Ox (106)

J

We introduce Gaussian type Generalized Fundamental

Solution (GFM) é(x,é) with scale y, , (i=12,---,N,)
[4.5]:
~ o1 (&)’
G(x,&) = -2 107
(x,8) Dmyl exp( 2V,~2 j (107)

We obtain an integral representation of Eq. (104). From Eq.
(107), we have

G( g) auz(xsi;)CG(X:&,.)

J J

Oua(x NP —u,(x,)0,(x,8) . (108)
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where

6G(x

9G(x,8) _
. =0,(x8).

(109)

1

Multiplying (N;(X,F,) on the both sides of Eq. (104) and
integrating in region V , we obtain

O:III|: (1) = 2l t)}G(X,F,)de

<0000 - 200089 5105 o
Y

=[[[ |68, (x.0) +u,(x.0)8, (x.2)]a,

—”Su,,(x, NG(x,&)n, ,dS, . (110)
Rewriting Eq. (110), we have
[[, 688, (x.0av, ==[[[ u.(xD,(x.8)dV,
+ ”Sui(x,t)é(x,é)nxdex . (11D)

Exchanging x and & in Eq. (111), we obtain a

generalized integral representation for Eq. (106):
I, 6@, &nav, =[[[ u&n & xav,
+ ”S G@& X, (& 0n,, dS,  (112)

The generalized integral representation of Eq. (106) is
obtained similarly. From Eq. (107), we have

0q. (x,1)G(x, %
q,é(x 1) ~ Glx g)_wwﬁ(xﬁq(x,g)_(113)

Multiplying (N;(X,(t,) on the both sides of Eq. (106) and
integrating in region V , we obtain

0.0
0.5
1.0 1.0
1.5
0.8 20
25
= 064
S
X
O 044
0.24
0.0

(a)Numerical solution

0.0
0.5
1.0 1.0
1.5
0.8 2.0
2.5
= 06
S
o
S 041
0.2
0.0

(b) Exact solution

Figure 3. Exponential initial density distribution (N=21, a=0, ini_fil=off).

—1t= 0.0
0.07+ - --t= 05
ceeet= 10
0.06 [y TN
,;y?; N ——t= 15
0.05 1 [N [ E ---=t= 20
T [ t= 25
. 0.04 [EFET N IR
S [ ERRN
X 0034 1l IR
(&} [y [IRRK
0.02- 1y Peath
il RRE
001 N KRR
Iy IR
A VN
. . 1, - e . \
0.00- f;\-ﬁf\r‘d—\,—-"- UL N
40 8 6 4 -2 0 2 4 6 8 10

0.07
0.06 177, BN
(N TTA B
0.054 I'I'.'.' sy
SN AT
_ 0.04 T
= R (S
S BT R
> 0.034 I l.-\\_“
© SITHI IR
0.02 peled RS
e
4 tpes (I
o.01 I'-,’:; R
0.00 >
T —— ——
10 8 -6 -4 0 2 4 6 8 10
X

(b) Exact solution

Figure 4. Rectangular initial density distribution (N=41, « 0, ini_fil=off).

A
=1 [ (ngy 2kt ”+5(x,¢)u,-<x,t>a,-<x,r>}dv

1L {—"’G("’z‘jﬁ("”) - q,-j(x,t)%(x,a)}dvx

=[]}, 6oy 5Dy + [ Gxop,(x08, (x)d7,
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+[[ 6.8y, (x0m dS, = [[[ a,(x09,(x.8)dV, . (114)

Rewriting Eq. (114), we have
-~ d i( > ) _ 5
Il 6™ 0 ar, =[] g,x.08 x.2)av,

~[[], Gx.8m;(x,08,, (x,0)dv,
-[[.6x®)q, x0m s, . (115)

Exchanging x and & in Eq. (115), we obtain a generalized
integral representation of Eq. (38):

Il 6 s ar, = ([ 4, €08 € 0ar,

-[[] G&xu, @08, @0 av,

-[[,GExq,@0n ds,. (116)

Then, we can obtain u,(X,#) numerically, if we use the
following process:

u,(x,¢) isknown — 6 (x,¢) fromEq. (112)
- g;;(x,t) fromEq.(105) — 0u,(x,1)/0t
from Eq. (116) — w,(x,t+dt) from Ou,(x,t)/0t

— add dt to ¢

— repeat. (117)

Numerical examples in two-dimension are given below.
The initial condition is given by

u(x,y,0) =v(x,y,0) = exp, _%(LL/SJ _%(BL/SJ . (118)

We assume that L is big enough, and the boundary
condition is specified as

u(xL,y,t) =u(x,xB,t) =0, (119a)
—1t= 0.0
0071 ---t= 05
Seot= 10
0.06 - N 3N
,;y?f, b —-—t= 15
0.05 1 Lol \-‘\‘-\‘. ---—t= 20
U T I e t= 25
_ 0.044 o [BRA)
= ;',I: el
X 003 e e
X 0034 Doy et
o 1ol v
0.02 N REER!
R
,.,I.' “-"‘
0.01+ e} (RN
NIH IR
0.00 hpbe | SRNCER N
APV R R T R
X

(a) =0 and ini_fil=off
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0.0
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1.0
0.06 4
1.5
0.05+ 2.0
25
_ 0.04
-
o
% 0034
O
0.02 4
0.01-
000 g -
S W S
10 -8 6 4 2 0 2 4 6 8 10
X
(b) a=0 and ini_fil=on
—1t= 0.0
007+ - --t= 05
Lo.-t= 10
0.06 4 TSRS
SR RN ——t= 15
EVERA W
0.054 l-”' ! \l..\.\‘.“‘ —-=t= 20
I A R O t= 25
0041 EETF A
b ol Lo
< S e
X 0034 1 Lt
o STETE A
0.024 P l.\\.
i RERR!
I .
troa [
0.01- e IRERAY
1411 .
W (I} Y
0.00- p——ﬁu-,-i-" Lt
—— T
10 8 -6 -4 -2 0 2 4 6 8 10
X
0.07 4
0.06 4
0.05+
004
=
S
< 003
O
0.02+
0.014
0.00+
—— 71—

(d) 0=0.01 and ini_fil=on
Figure 5. Rectangular initial density distribution (N=41).

v(xL, y,t) =v(x,xB,t)=0. (119b)
The exact solution of two-dimensional Burgers’ equation is
very difficult. Hence, we compare the numerical solutions by
GIRM with those by FDM.
In order to reduce spurious oscillation, it is effective to use
the finer mesh, but it invites serious increase of computation
time and memory. Addition of a numerical damping:

1
() _ (n) (n) (n) (n) (n)
u;; g(u"“f R TR g TR L Th )
-a { (120)
(N OB ) S O SN OO (n
TN —(vi+1j + Vi + Vi, + Vit + 4vij )

ij 8
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(n

to u’ )

' and v" at every time step of the time evolution of

u and v{?, where a is damping constant. Furthermore,
if the discontinuity of initial density distribution invites

I

serious errors, it is effective to replace u/;’ and v/}’ with a

filtered value such as

1 u(o) +u.(0) +u.(0) +u{0) +u(0)

i+lj ij+l i-1j ij-l1 ij (121)
(0) (0) (0) (0) ) |-
8 Vier; TVia Tvio; tvin Ty

For the reduction of computation time, numerical integrals
including G and &, on the right hand sides of Eq. (112) and

(116) with respect to & are conducted in the neighborhood of
X:

M-IN-1
SN G mmy= Y IG,jmny. (122)
m=0n=0 li=m|<bdw |j—n|<bdw

The parameters for numerical calculations are as follows:
L=B=8; M=N=21,41; dx=dy=2L/M
Y. =¥, =0.75dx ; dt=0.0025; T =4000dt ;
k=001; U=0; a=0; ini_fil =off ; bdw=3.(123)

Numerical results are shown in Figs. 6, 7 and 8. The
solutions by GIRM are similar to those by FDM. However, if
we check carefully both results, the solutions by GIRM are
more accurate than those by FDM.

7. Conclusions

In the present paper, Integral Representation Method (IRM)
and Generalized Integral Representation Method (GIRM) are
explained from very basic level to advanced level, and the
relationships with other numerical methods such as Finite
Difference Method (FDM) and Collocation Method (CM) etc.
are clarified.

—1t= 0.0
---t= 20
1.0 4.0
6.0
0.8+ 8.0
10.0
= 067
S)
x
=1 0.4
0.2
0.0

(a) GIRM solution

0.8+

0.6+

0.4+

u(x,0,t)

0.2

0.0+

(b) FDM solution
Figure 6. Exponential initial density distribution (N=21).

—1t= 00
---t= 20
1.04 c--t= 40

——t= 6.0
0.8

0.6

u(x,0,t)

0.4

0.2

0.0

0.8

0.6

u(x,0,t)

0.4

0.2

0.04

(b) FDM solution

Figure 7. Exponential initial density distribution (N=31).

0.8

0.6

u(x,0,t)

0.4

(a) GIRM solution

13
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u(x,0,t)

(b) FDM solution
Figure 8. Exponential initial density distribution (N=41).

IRM is one of convenient methods to solve Initial and
Boundary Value Problems (IBVP) [1-3]. It can be applied to
irregular mesh, and the solution is stable and accurate.
However, it was originally developed for linear equations with
known fundamental solutions. We generalized IRM [4-6]. In
GIRM, we have shown that the proper fundamental solution
can be determined in advance. Determination of the
fundamental solution in advance may always be possible.
Usually, it is a good choice to use Gaussian function as the
fundamental solution.

In the present paper, the generalization of IRM was
discussed not only from the theoretical viewpoint, but also
from the computational aspect. GIRM was applied to one- and
two-dimensional diffusion problems, and two-dimensional
Burgers’ equation. The numerical results are stable and
accurate.

As the further direction, improvements of stability,
accuracy and computational efficiency is very important [7,8].
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