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Abstract: Integral Representation Method (IRM) is one of convenient methods to solve Initial and Boundary Value Problems 

(IBVP). It can be applied to irregular mesh, and the solution is stable and accurate. However, it was originally developed for 

linear equations with known fundamental solutions. In order to apply to general nonlinear equations, we must generalize the 

method. In the present paper, a generalization of IRM (GIRM) is discussed and applied to specific problems and the numerical 

solutions obtained. The numerical results are stable and accurate. The generalized method is called Generalized Integral 

Representation Method (GIRM). Brief explanations on the relationships with other numerical methods are also given. 
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1. Introduction 

Integral Representation Method is one of convenient 

methods to solve Initial and Boundary Value Problems (IBVP) 

[1-3]. It can be applied to irregular mesh, and the solution is 

stable and accurate. However, it was originally developed for 

linear equations with known fundamental solutions. In order 

to apply to general nonlinear equations, we must generalize 

the method [4-6]. In IRM, the fundamental solution satisfying 

a proper differential equation is sought based on our 

knowledge of the differential equation. However, in 

Generalized Integral Representation Method (GIRM), we 

assume the proper fundamental solution in advance. Choice of 

the fundamental solution may always be possible. 

In the present paper, the generalization of IRM is discussed 

not only from the theoretical viewpoint, but also the 

computational aspects are also discussed. GIRM is applied 

diffusion problems and Burgers’ equation. The numerical 

results are stable and accurate.  

In the present paper, IRM and GIRM are explained from 

very basic level to advanced level, and the relationships with 

other numerical methods such as Finite Difference Method 

(FDM) and Collocation Method (CM) etc. are also clarified.  

 

2. Preparation 

As a basis of discussion, we discuss the solution of 

one-dimensional Initial Boundary Value Problem (IBVP) of 

one-dimensional diffusion problem in flow.  

Let x  and t  refer to the coordinate and time, respectively. 

IBVP of one-dimensional diffusion in flow is given by 

σκ +
∂
∂=

∂
∂+

∂
∂

2

2

x

C

x

C
U

t

C
 in LxL <<−  & 0>t ,  (1) 

)(tgC L−=  at Lx −=  & 0>t  

and )(tgC L=  at Lx =  & 0>t ,       (2) 

)(xfC =  in LxL <<−  at 0=t ,        (3) 

where ),( txC , U , ),( txσ  and κ  are the density of 

substance, velocity of flow, source of substance and constant 

of diffusion, respectively. The functions )(tgλ  ( LL,−=λ ) 

and )(xf  give the boundary and initial values of the 

density ),( txC , respectively.  

A numerical solution of IBVP can be obtained by the 

following procedure:  

),( txC  is known at t  →  obtain tC ∂∂  from 
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Eq. (1) →  obtain ),( dttxC +  from 

ttxCdttxCdtxC ∂∂⋅+=+ ),(),()(  →  

add dt  to t  →  repeat.               (4) 

2.1. Finite Difference Method (FDM) 

In Finite Difference Method (FDM), the differential 

equation Eq. (1) is discretized directly using Differences. 

We adopt a regular mesh or grid: 

NLdx 2= , idxLxi +−=  Ni ,,1,0 ⋯= ,     (5) 

ndttn =  ⋯,1,0=n ,              (6) 

),()(

ni

n

i txCC = , ),()(

ni

n

i txσσ = .        (7) 

The space derivatives are approximated using central 

differences:  
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. (8b) 

Then, we obtain an approximation of IBVP defined by Eqs. 

(1-3):  
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 for 1,,1 −= Ni ⋯  & ⋯,1=n ,           (9) 
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n tgC −= , )()(
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N tgC =  for ⋯,1,0=n ,     (10) 

)()0(

ii xfC =  for 1,,1 −= Ni ⋯ ,           (11) 

where ),()(

ni

n

i txCC = , etc. 

If we use Explicit Time Evolution (ETE), [ ] )(n

i
tC ∂∂  is 

interpreted as 
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)1( +n

iC  is obtained by the following procedure:  

)(n

iC  is known at t  →  obtain [ ] )(n

i
tC ∂∂  from 

Eq. (9) →  obtain )1( +n

iC  from [ ] )(n

i
tC ∂∂  

using Eq. (12) →  add dt  to t  →  repeat.    (13) 

If we use Implicit Time Evolution (ITE), [ ] )(n

i
tC ∂∂  is 

understood as 
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and we substitute Eq. (14) into Eq. (9):  
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for 1,,1 −= Ni ⋯  & ⋯,1=n ,                   (15) 

)(n

iC  is obtained by the following procedure:  

)1( −n

iC  is known at t  →  obtain )(n

iC  solving  

an algebraic equation Eq. (15) →  add dt  to  

t  →  repeat.                     (16) 

FDM-ITE requires inversion of matrix. 

FDM discretizes the differential equation into difference 

equation. FDM is accurate if we use highly accurate difference 

such as central difference, but FDM requires regular grid. 

FDM-ETE does not require inversion of matrix. This is very 

helpful to reduce computational time. 

2.2. Mode Function Interpolation Method (MFIM) 

The unknown function ),( txC  could be interpolated 

before obtaining discretizing the equations. We may call this 

method Mode Function Interpolation Method (MFIM). 

Collocation Method (CM), Conventional Galerkin Method 

(CGM) and Finite Element Method (FEM) etc., belong to 

MFIM. CM and CGM apply MFIM in global region, and FEM 

does in local regions. 

In case of CM, we use MFIM of the following form: 
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where )(xGµ  is a mode function. )(tcµ  is the coefficient of 

interpolation and corresponds to generalized coordinates in 

analytical mechanics. 

If we substitute Eq. (17) into Eq. (1-3), we obtain 
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in LxL <<−  & 0>t ,              (18) 
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=µ
µµ  in LxL <<− .     (20) 

We can use a irregular mesh or grid in CM: 

LxxxxL NN ,,,,,, 1221 −−− ⋯ ,           (21) 

ndttn =  ⋯,1,0=n ,            (22) 
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n
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i txσσ = .         (23) 

The discretized equations of IBVP using CM are given by 
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for 1,,2,1 −= Ni ⋯  & ⋯,2,1=n ,        (24) 
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If we use Implicit Time Evolution (ITE), [ ] )(n
dtdc µ  is 

understood as 
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we substitute Eq. (14) into Eq. (24):  
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for 1,,1 −= Ni ⋯  & ⋯,1=n ,             (28) 

)(ncµ  is obtained by the following procedure:  

)1( −ncµ  is known at 1−t  →  obtain )(ncµ  from 

Eqs. (28) and (25) →  add dt  to t  →  repeat.  (29) 

If N  and M  satisfy 

MN ≥+1 ,                  (30) 

we can apply Least Square Method (LSM) to determine 
)(ncµ ( 1,,1,0 −= M⋯µ ). 

CM does not require regular mesh. If proper mode functions 

are used, the accuracy is high.  

If )(tg L− and )(tgL  satisfy 

0)( =− tg L , 0)( =tgL ,           (31) 

we can make mode function )(xGµ  satisfy 

0)()( ==− LGLG µµ  for 1,,1,0 −= M⋯µ .   (32) 

Then, Eqs. (24-26) are replaced by 

)(

0
2

2

)(

0

)(

0

)(

)()(

)(

n

i

M
in

M
in

M

i

n

dx

xGd
c

dx

xdG
cU

xG
dt

dc

σκ
µ

µ
µ

µ

µ
µ

µ
µ

µ

++−=










∑∑

∑

==

=
 

for 1,,2,1 −= Ni ⋯  & ⋯,1=n           (33) 
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In this case, we can also apply ETE. [ ] )(n
dtdc µ  is 

interpreted as 
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)1( +ncµ  is obtained by the following procedure:  

)(ncµ  is known at t  →  obtain [ ] )(n
dtdc µ  from 

Eq. (33) →  obtain )1( +ncµ  from [ ] )(n
dtdc µ  

using Eq. (35) →  add dt  to t  →  repeat.   (36) 

3. Integral Representation Method (IRM) 

Eq. (17) suggests us an integral representation of dependent 

variable: 

ξξξ dtcxGtxC
L

),(),(),(
0∫=  

in LxL ≤≤−  & 0≥t .          (37) 

since 
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where 

M

L
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2=ξ , ),()( tdctc ξµµ = , ),(
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M
xG = . (39) 

Multiplying a function ),( ξxG  of x  and ξ  on both side 

of Eq. (1) 
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Rewriting Eq. (40), we have 
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Exchanging x  and ξ , we obtain 
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If ),( ξxG  is a fundamental solution of the differential 

operator 22 x∂∂ , ),( ξxG  is defined as 
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where 
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Eq. (42) or (46) is an integral representation of Eq. (1). 

(1) Steady solution 

If there exists a steady solution: 
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If we substitute boundary condition into Eq. (46) and set x  

to L−  and L , we obtain 
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respectively. Eqs. (49), (50) and (51) are algebraic equations 
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







∂
∂ ),(

)( ξ
.            (54b) 

We prepare for discretization of Eq. (46)  

∑ ∫

∑∫

∫

−

=

+

−

−

=

+

−

−










∂
∂=

∂
∂

=

∂
∂

1

0

2

2

)(

1

0

2

2

),(

),(
),(

),(
),(

N

j

dj

dj

n

j

N

j

dj

dj

n

L

L

n

dxG
t

C

dxG
t

tC

dxG
t

tC

ξξ

ξξ

ξξ

ξξ

ξξ

ξξξ

ξξξ

,      (55a) 

),(
),(

),(
),(

),(
),(

LxG
tLC

LxG
tLC

xG
tC

nn

L

L

n

−
∂
−∂−

∂
∂=










∂
∂

=

−=

ξξ

ξ
ξ
ξ ξ

ξ ,  (55b) 

∑ ∫

∑∫

∫

−

=

+

−

−

=

+

−

−

=

=

1

0

2

2

)(

1

0

2

2

),(

),(),(

),(),(

N

j

dj

dj

n

j

N

j

dj

dj
n

L

L
n

dxG

dxGt

dxGt

ξξ

ξξ

ξξ

ξξ

ξξσ

ξξξσ

ξξξσ

,          (55c) 

ξξ

ξ
ξξ

ξ

ξ

∂
−∂−

∂
∂=










∂
∂

−

=

−=

),(
)(

),(
)(

),(
),(

LxG
tg

LxG
tg

xG
tC

nLnL

L

L

n

,    (55d) 

where ),(),( njnj tCttC ξξ ξ=∂∂  etc.  

Eq. (46) can be discretized as 









−

∂
−∂−

∂
∂−

Γ








∂
∂

∑
−

=

),(
),(

),(
),(

)(
1

0

)(

xLG
tLC

xLG
tLC

x
t

C

nn

N

j

j

n

j

ξξ
κ

 

∑∑
−

=

−

=
Γ+Λ+=

1

0

)(
1

0

)(
)()(),()(

N

j

j

n

j

N

j

j

n

jn xxCUtxCx σκε  
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[ ]),()(),()( xLGtgxLGtgU nLnL −−− −  










∂
−∂−

∂
∂− − ξξ

κ ),(
)(

),(
)(

xLG
tg

xLG
tg nLnL ,             (56) 

where 

∫
+

−
=Γ

2

2
),()(

ξξ

ξξ
ξξ

dj

dj
j dxGx , ∫

+

− ∂
∂=Λ

2

2

),(
)(

ξξ

ξξ
ξ

ξ
ξdj

dj
j d

xG
x . (57) 

The unknowns are [ ] )(n

j
tC ∂∂  ( 1,,1,0 −= Nj ⋯ ), 

ξ∂−∂ ),( ntLC  and ξ∂∂ ),( ntLC . Eq. (56) is satisfied at the 

center points 110 ,,, −= Nxxxx ⋯  of elements and boundary 

points Lx ,0= . Hence, we have 2+N  equations for 2+N  

unknowns.  

If we approximate ξ∂−∂ ),( ntLC  and ξ∂∂ ),( ntLC  by 

( )),(),(
2),(

0 nn
n tLCtxC

d

tLC −−=
∂
−∂

ξξ
,     (58a) 

( )),(),(
2),(

1 nNn
n txCtLC

d

tLC
−−+=

∂
+∂

ξξ
     (58b) 

and satisfy Eq. (56) at the center points 110 ,,, −= Nxxxx ⋯  of 

elements, then we have N  equations for N  unknowns. 

Although IRM is mathematically complex and requires 

matrix inversion, but the accuracy of the numerical result is 

high. It can be applied to irregular mesh. If the computer code 

is properly written, the computational load may be 

comparable with Finite element Method (FEM). 

4. Generalized Integral Representation 

Method (GIRM) 

IRM is basically developed for a linear problem with a 

known fundamental solution for the differential equation. 

Hence, if we have an IBVP using a differential equation 

different from Eq. (1), for example:  

σκ +
∂
∂=

∂
∂

4

4

x

C

t

C
 in LxL <<−  & 0>t ,       (59) 

we must find first a fundamental solution satisfying 

)(
),(

4

4

ξδξ −=
∂

∂
x

x

xG
                 (60) 

In order to apply IRM to any kinds of linear and nonlinear 

problems, we must generalize the method. For the purpose, we 

generalize the concept of the fundamental solution. We 

replace Eq. (43) by 

),(
~),(

~

2

2

ξδξ
x

x

xG =
∂

∂
,                 (61) 

where ),(
~ ξδ x  can be 

)(),(
~ ξδξδ −≠ xx .             (62) 

),(
~ ξxG  is a generalized fundamental solution chosen 

properly, for example 








 −−=
2

2

2

)(
exp

2

1
),(

~

γ
ξ

γπ
ξ x

xG           (63) 

The function ),(
~ ξδ x  is not Dirac’s delta function as in Eq. 

(43), but it is nothing but the second derivatives of ),(
~ ξxG  

with respect to x . 

Multiplying ),(
~ ξxG  on both side of Eq. (1), we obtain  

similar to Eq. (41):  

∫

∫∫

−

−−

∂
∂+

∂
∂=

∂
∂

L

L

L

L

L

L

dx
x

xG
txC

dx
x

xG
txCUdxxG

t

txC

2

2 ),(
~

),(

),(
~

),(),(
~),(

ξκ

ξξ
 

[ ]
Lx

Lx

Lx

Lx

x

xG
txCxG

x

txC

xGtxCU

=

−=

=

−=













∂
∂−

∂
∂+

−

),(
~

),(),(
~),(

),(
~

),(

ξξκ

ξ
 

∫−+
L

L
dxxGtx ),(

~
),( ξσ .                       (64) 

Exchanging x  and ξ , we obtain 

∫

∫∫

−

−−

∂
∂+

∂
∂=

∂
∂

L

L

L

L

L

L

d
xG

tC

d
xG

tCUdxG
t

tC

ξ
ξ
ξξκ

ξ
ξ
ξξξξξ

2

2 ),(
~

),(

),(
~

),(),(
~),(

 

[ ] L

LxGtCU
=

−=−
ξ
ξξξ ),(

~
),(  

L

L

xG
tCxG

tC
=

−=











∂
∂−

∂
∂+

ξ

ξ
ξ
ξξξ

ξ
ξκ ),(

~

),(),(
~),(  

∫−+
L

L
dxGt ξξξσ ),(

~
),( .                      (65) 

This is a generalized integral representation of Eq. (1). This 

integral representation is applied to numerical solution of 

IBVP in the similar way as discussed for IRM. This numerical 

method is called GIRM.  

Numerical examples are given below. The initial condition 

is doublet-like and given by 

dx

xd

x

xx
xC

)()()(
)0,(

00

δξδ
ξ

ξδ
ξξ

−=
∂

−∂−=
∂

−∂=
==
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or 










=+

−=−

=
otherwise0

2for1

12for1

2

2

)0(
Nidx

Nidx

Ci .         (66) 

We assume that L  is big enough, and the boundary 

condition is specified as 

0),(),( =±=± tLCtLC x .               (67) 

The exact solution is given by 

t

Utx

t

Utx

t

t

Utx

tx
txC

ννπν

νπν

24

)(
exp

2

1

4

)(
exp

2

1
),(

2

2

−







 −−=



















 −−
∂
∂−=

.      (68) 

The parameters for numerical calculations are as follows:  

4=L ; 160=N ; 05.082 == Ldx ; dx75.0=γ ; 

0005.0=dt ; dtT 3000= ; 089.0=κ ; 1,0=U .    (69) 

Numerical results are shown Figs. 1 and 2. Because of the 

singular initial condition, we need very fine mesh. The 

accuracy of the numerical results is very high. The numerical 

results coincide with the exact ones. 

5. Further Generalization of General 

Integral Representation Method 

(GIRM) 

A further generalization of GIRM in one-dimensional case 

is discussed below:  

),(,,,,,,
2

2

txf
x

u

x

u

x

u
utxF

t

u
N

N

=








∂
∂

∂
∂

∂
∂+

∂
∂

⋯  

in LxL <<−  & 0>t .             (70) 

Rewriting Eq. (70), we have 

x

u

∂
∂=1θ , 

x∂
∂= 1

2

θθ , … , 
x

N
N ∂

∂= −1θθ ,      (71) 

( ) ),(,,,,,, 21 txfutxF
t

u
N =+

∂
∂ θθθ ⋯ .       (72) 

We introduce a generalized fundamental solution ),(
~ ξxG  

and the derivative ),(
~

1 ξδ x  with respect to x , for example 








 −−=
2

2

2

)(
exp

2

1
),(

~

γ
ξ

γπ
ξ x

xG ,       (73a) 

),(
~),(

~

1 ξδξ
x

x

xG =
∂

∂
.            (73b) 

We use the following formula:  

x

xG
tx

x

xGtx

xG
x

tx

n
n

n

∂
∂−

∂
∂=

∂
∂

−
−

−

),(
~

).(
),(

~
).(

),(
~).(

1
1

1

ξθξθ

ξθ

.     (74) 

Applying Eq. (74) to each of Eq. (71), we have 

∫−
−










∂
∂−=

L

L

n
n dxxG

x

tx
tx ),(

~),(
),(0 1 ξθθ  

∫−
−

−



















∂
∂+

∂
∂−

=
L

L

n

n
n

dx

x

xG
tx

x

xGtx
txxG

),(
~

),(

),(
~

),(
),(),(

~

1

1

ξθ

ξθθξ
 

[ ] Lx

Lxn

L

L
n xGtxdxtxxG

=

−=−−
−= ∫ ),(

~
),(),(),(

~
1 ξθθξ . 

∫− −+
L

L
n dxxtx ),(

~
),( 11 ξδθ                            (75) 

Rewriting Eq. (75), we obtain 

[ ] Lx

Lxn

L

L
n

L

L
n

xGtx

dxxtxdxtxxG

=

−=−

− −−

+

−= ∫∫
),(

~
),(

),(
~

),(),(),(
~

1

11

ξθ

ξδθθξ
.    (76) 

Exchanging x  and ξ , we obtain a generalized integral 

representation:  

[ ] L

Ln

L

L
n

L

L
n

xGt

dxtdtxG

=

−=−

− −−

+

−= ∫∫
ξ

ξξξθ

ξξδξθξξθξ

),(
~

),(

),(
~

),(),(),(
~

1

11

.   (77) 

Eq. (74) is the integral representation of Eq. (71). 

The integral representation of Eq. (72) is obtained below. 

Multiplying ),(
~ ξxG  on both sides of Eq. (72) and integrating 

in ),(
~ ξxG  with respect to t , we have 

 

(a) Numerical solution 
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(b) Exact solution 

Figure 1. Doublet-like initial density distribution (U=0).  

  

(a) Numerical solution 

 

(b) Exact solution 

Figure 2. Doublet-like initial density distribution (U=1).  

∫− ∂
∂=

L

L
dx

t

txu
xG

),(
),(

~
0 ξ  

( )∫−+
L

L
N dxxGtxtxtxtxutxF ),(

~
),(,),,(),,(),,(,, 21 ξθθθ ⋯  

∫−
−

L

L
dxxGtxf ),(

~
),( ξ .                             (78) 

Exchanging x  and ξ , we obtain a generalized integral 

representation for Eq. (72):  

∫− ∂
∂=

L

L
d

t

tu
xG ξξξ ),(
),(

~
0  

( )∫−
+

L

L
N dxGttttutF ξξξθξθξθξξ ),(

~
),(,),,(),,(),,(,, 21 ⋯  

∫−
−

L

L
dxGtf ξξξ ),(

~
),( .                              (79) 

),( txu  is obtained by the following procedure:  

),( txu  is known →  ),(1 txθ  from Eq. (77) 

→  ),(2 txθ  from Eq. (77) →  … →  ),(1 txn−θ  

from Eq. (77) →  ttxu ∂∂ ),(  from Eq. (79) →  

),( dttxu +  from ttxu ∂∂ ),(  →  repeat.      (80) 

6. Generalized Integral Representation 

Method (GIRM) in Multi-Dimensional 

Space 

6.1. Application of GIRM to Diffusion in Flow 

As a basis of discussion, we discuss the solution of Initial 

Boundary Value Problem (IBVP) of dN -dimensional 

diffusion in a flow. 

If ix , ),,2,1( dNi ⋯=  and t  refer to the coordinates 

and time, the diffusion equation in dN -dimension is 

expressed as 

σκ +
∂∂

∂=
∂
∂+

∂
∂

jji

i
xx

C

x

C
U

t

C
2

.             (81) 

The summation convention is used for the repeated indices, 

that is, 
dNdNii xCUxCUxCU ∂∂++∂∂=∂∂ ⋯11  and 

222

1

22

dNii xxxx ∂∂++∂∂=∂∂∂ ⋯ . C , iU  and κ  refer to 

the density of substance, velocity vector of a given flow and 

diffusion constant, respectively. Since it’s not difficult to 

obtain two-dimensional expressions from three-dimensional 

ones, we develop theory using three-dimensional expressions 

below.  

We rewrite the basic equation Eq. (81) as follows: 

Non-uniformity equation: 

i

i
x

C

∂
∂=θ .                   (82) 

Constitutive equation: 

iiq θκ−= .                  (83) 

Equilibrium equation: 

i

i

i

i
x

q

x

C
U

t

C

∂
∂−=

∂
∂+

∂
∂

.              (84) 

We introduce Gaussian type generalized fundamental 
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solution ),(
~

ξxG  with scale iγ  , ),,2,1( dNi ⋯=  [4,5], for 

example:  

∏
=








 −−=
dN

i i

ii

i

x
G

1
2

2

2

)(
exp

2

1
),(

~

γ
ξ

γπ
ξx ,       (85) 

We obtain an integral representation of Eq. (82). From Eq. 

(85), we have 

),(
~

),(
),(

~
),(

),(
~),(

ξxx
ξxx

ξx
x

j

ii

tC
x

GtC
G

x

tC δ−
∂

∂=
∂

∂
,  (86) 

where 

),(
),(

~

ξx
ξx

i

ix

G δ=
∂

∂
.               (87) 

Multiplying ),(
~

ξxG  on the both sides of Eq. (82) and 

integrating in region V , we obtain 

∫∫∫ 








∂
∂−=

V
i

i dVG
x

tC
t xξx

x
x ),(

~),(
),(0 θ  

∫∫∫
















+

∂
∂−

=
V

i

i

i
dV

tC

x

GtC
tG

x

ξxx

ξxx
xξx

),(
~

),(

),(
~

),(
),(),(

~

δ

θ
 

[ ]∫∫∫ +=
V

ii dVtCtG xξxxxξx ),(
~

),(),(),(
~ δθ . 

∫∫−
S

idSnGtC xxξxx ),(
~

),( .                         (88) 

Rewriting Eq. (88), we have 

∫∫∫∫∫∫ −=
V

i
V

i dVtCdVtG xx ξxxxξx ),(
~

),(),(),(
~ δθ  

∫∫+
S

idSnGtC xxξxx ),(
~

),( .       (89) 

Exchanging x  and ξ  in Eq. (89), we obtain a 

generalized integral representation for Eq. (82): 

∫∫∫∫∫∫ −=
V

i
V

i dVtCdVtG ξξ xξξξxξ ),(
~

),(),(),(
~ δθ  

∫∫+
S

i dSntCG ξξξxξ ),(),(
~

.       (90) 

A generalized integral representation of Eq. (84) is 

obtained similarly. From Eq. (87), we have 

i

i

i

i
x

GtCtU
G

x

tC
tU

∂
∂=









∂
∂ ),(

~
),(),(

),(
~),(

),(
ξxxx

ξx
x

x  

),(
~

),(),(),(
~

),(
),(

ξxxxξxx
x

ii

i

i tCtUGtC
x

tU δ−
∂

∂− .  (91a) 

),(
~

),(
),(

~
),(

),(
~),(

ξxx
ξxx

ξx
x

ii

i

i

i

i tq
x

Gtq
G

x

tq δ−
∂

∂=
∂

∂
. (91b) 

Multiplying ),(
~

ξxG  on the both sides of Eq. (84) and 

integrating in region V , we obtain 

∫∫∫ 








∂
∂+

∂
∂+

∂
∂=

V
i

i

i

i dV
x

tq

x

tC
tU

t

tC
G x

xx
x

x
ξx

),(),(
),(

),(
),(

~
0  

∫∫∫∫∫∫ ∂
∂+

∂
∂=

V
i

i

V
dV

x

GtCtU
dV

t

tC
G xx

ξxxxx
ξx

),(
~

),(),(),(
),(

~
 

∫∫∫ 







+

∂
∂−

V
ii

i

i dVtCtUGtC
x

tU
xξxxxξxx

x
),(

~
),(),(),(

~
),(

),( δ  

∫∫∫











−

∂
∂+

V
ii

i

i dVtq
x

tqG
xξxx

xξx
),(

~
),(

),(),(
~

δ  

∫∫∫∫∫ +
∂

∂=
S

ii
V

dSntCtUGdV
t

tC
G xxx xxξx

x
ξx ),(),(),(

~),(
),(

~
 

∫∫∫ 







+

∂
∂−

V
ii

i

i dVtCtUGtC
x

tU
xξxxxξxx

x
),(

~
),(),(),(

~
),(

),( δ  

∫∫∫∫∫ −+
V

ii
S

ii dVtqdSntqG xxx ξxxxξx ),(
~

),(),(),(
~ δ .    (92) 

Rewriting Eq. (92), we have 

∫∫∫ ∂
∂

V
dV

t

tC
G x

x
ξx

),(
),(

~
 

[ ]∫∫∫ +=
V

iii dVtqtCtU xξxxxx ),(
~

),(),(),( δ  

∫∫∫ ∂
∂+

V
i

i dVGtC
x

tU
xξxx

x
),(

~
),(

),(
 

[ ]∫∫ +−
S

iii dSntqtCtUG xxxxxξx ),(),(),(),(
~

.      (93) 

Exchanging x  and ξ  in Eq. (93), we obtain a 

generalized integral representation of Eq. (84): 

∫∫∫ ∂
∂

V
dV

t

tC
G ξ

ξ
xξ

),(
),(

~
 

[ ]∫∫∫ +=
V

iii dVtqtCtU ξxξξξξ ),(
~

),(),(),( δ  

∫∫∫ ∂
∂+

V
i

i dVGtC
tU

ξxξξ
ξ

),(
~

),(
),(

ξ
 

[ ]∫∫ +−
S

iii dSntqtCtUG ξξξξξxξ ),(),(),(),(
~

.      (94) 

Then, we can obtain ),( tC x  numerically, if we use the 

following process:  
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),( tC x  is known →  ),( ti xθ  from Eq. (90) →  

),( tqi x  from Eq. (83) →  ttC ∂∂ ),(x  from 

Eq. (94) →  ),( dttC +x  from ttC ∂∂ ),(x  →  

add dt  to t  →  repeat.            (95) 

Numerical examples in two-dimension are given below. 

The initial condition is given by 























−








−=

22

82

1

82

1
exp)0,,(

B

y

L

x
yxC .       (96) 

We assume that L  is big enough, and the boundary condition 

is specified as 

0),,(),,( =±=± tyLCtyLC x , 

0),,(),,( =±=± tBxCtBxC x .            (97) 

The exact solution is given by 

),,( tyxC . 

∫ ∫− − 






 −+−−−=
L

L

B

B
ddC

t

yUtx

t
ηξηξ

ν
ηξ

πν
)0,,(

4

)()(
exp

4

1 22

.   (98) 

In order to reduce spurious oscillation, it is effective to use 

the finer mesh, but it invites serious increase of computation 

time and memory. Addition of a numerical damping: 

( )






 ++++−− −−++
)()(

1

)(

1

)(

1

)(

1

)(
4

8

1 n

ji

n

ji

n

ji

n

ji

n

ji

n

ji CCCCCCα   (99) 

to )(n

jiC  at every time step of the time evolution of )(n

jiC , 

where α  is damping constant. Furthermore, if the 

discontinuity of initial density distribution invites serious 

errors, it is effective to replace )0(

jiC  with a filtered value such 

as 

( ))0()0(

1

)0(

1

)0(

1

)0(

1 4
8

1
jijijijiji CCCCC ++++ −−++ .        (100) 

For the reduction of computation time, numerical integrals 

including G  and 1δ  on the right hand sides of Eq. (90) and 

(94) with respect to ξ  are conducted in the neighborhood of 

x : 

∑ ∑∑∑
≤− ≤−

−

=

−

=
≈

bdwmi bdwnj

M

m

N

n

nmjiInmjiI
|| ||

1

0

1

0

),,,(),,,( .   (101) 

The parameters for numerical calculations are as follows:  

8== BL ; 41,21== NM ; MLdydx 2== ; 

dxyx 75.0== γγ ; 005.0=dt ; dtT 500= ; 1.0=κ ; 

1,0=U ; 01.0,0=α ; offon,_ =filini ; 3=bdw . (102) 

Numerical results are shown in Figs. 3 and 4. The accuracy 

of the numerical results is very high. The numerical results 

coincide with the exact ones. The spurious oscillation in Fig. 4 

is reduced by increasing M  and N , but it invites serious 

increase of computation time and memory. As shown in Fig. 5, 

the initial density filter and/or artificial damping given by Eqs. 

(99) and (100), respectively, can reduce the spurious 

oscillation.  

6.2. Application of GIRM to Burgers’ Equation 

As a basis of discussion, we discuss the solution of 

one-dimensional Initial Boundary Value Problem (IBVP) of 

dN -dimensional Burgers’ equation.  

If ix , ),,2,1( dNi ⋯=  and t  refer to the coordinates 

and time, the fluid motion in dN -dimension is expressed as 

jj

i

j

i
j

i

xx

u

x

u
u

t

u

∂∂
∂=

∂
∂+

∂
∂ 2

ν ,                (103) 

The summation convention is used for the repeated indices, 

that is, 222

1

22

Nii xxxx ∂∂++∂∂=∂∂∂ ⋯ . iu , 

),,2,1( dNi ⋯=  refers to the velocity vector. ν  is the 

kinematic viscosity. Since it’s not difficult to obtain 

two-dimensional expressions from three-dimensional ones, 

we develop theory using three-dimensional expressions 

below.  

We rewrite the basic equations Eq. (103) as follows: 

Non-uniformity equation: 

j

i
ji

x

u

∂
∂=θ .                        (104) 

Constitutive equation:  

jijiq θν−= .                       (105) 

Equilibrium equation:  

j

ji

jij
i

x

q
u

t

u

∂
∂

−=+
∂
∂ θ .                 (106) 

We introduce Gaussian type Generalized Fundamental 

Solution (GFM) ),(
~

ξxG  with scale iγ  , ),,2,1( dNi ⋯=  

[4,5]: 

∏
=










 −−=
dN

i i

ii

i

x
G

1
2

2

2

)(
exp

2

1
),(

~

γ
ξ

γπ
ξx ,       (107) 

We obtain an integral representation of Eq. (104). From Eq. 

(107), we have 

),(
~

),(
),(

~
),(

),(
~),(

ξxx
ξxx

ξx
x

ji

j

i

j

i tu
x

Gtu
G

x

tu δ−
∂

∂=
∂

∂
. (108) 
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where 

),(
~),(

~

ξx
ξx

i
ix

G δ=
∂

∂
.                 (109) 

Multiplying ),(
~

ξxG  on the both sides of Eq. (104) and 

integrating in region V , we obtain 

∫∫∫












∂
∂−=

V
j

i
ji dVG

x

tu
t xξx

x
x ),(

~),(
),(0 θ  

∫∫∫











+

∂
∂−=

V
ji

j

i
ji dVtu

x

Gtu
tG xξxx

ξxx
xξx ),(

~
),(

),(
~

),(
),(),(

~ δθ  

[ ]∫∫∫ +=
V

jiji dVtutG xξxxxξx ),(
~

),(),(),(
~ δθ  

∫∫−
S

ji dSnGtu xxξxx ),(
~

),( .                        (110) 

Rewriting Eq. (110), we have 

∫∫∫∫∫∫ −=
V

ji
V

ji dVtudVtG xx ξxxxξx ),(
~

),(),(),(
~ δθ  

∫∫+
S

ji dSnGtu xxξxx ),(
~

),( .    (111) 

Exchanging x  and ξ  in Eq. (111), we obtain a 

generalized integral representation for Eq. (106):  

∫∫∫∫∫∫ −=
V

ji
V

ji dVtudVtG ξξ xξξξxξ ),(
~

),(),(),(
~ δθ  

∫∫+
S

ji dSntuG ξξξxξ ),(),(
~

    (112) 

The generalized integral representation of Eq. (106) is 

obtained similarly. From Eq. (107), we have 

),(
~

),(
),(

~
),(

),(
~),(

ξxx
ξxx

ξx
x

jji

j

ji

j

ji
tq

x

Gtq
G

x

tq
δ−

∂
∂

=
∂

∂
. (113) 

Multiplying ),(
~

ξxG  on the both sides of Eq. (106) and 

integrating in region V , we obtain 

  

(a)Numerical solution 

 

(b) Exact solution 

Figure 3. Exponential initial density distribution (N=21, α=0, ini_fil=off).  

  

(a) Numerical solution 

 

(b) Exact solution 

Figure 4. Rectangular initial density distribution (N=41, α=0, ini_fil=off).  

∫∫∫

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


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


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t
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G x

x
xx

x
ξx

),(
),(),(

),(
),(

~
0 θ  

∫∫∫ 






 +
∂

∂=
V

jij
i dVttuG

t

tu
G xxxξx

x
ξx ),(),(),(

~),(
),(

~ θ  

∫∫∫











−

∂
∂

+
V

jji

j
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dVtq

x

tqG
xξxx

xξx
),(

~
),(

),(),(
~

δ  

∫∫∫∫∫∫ +
∂

∂=
V

jij
V

i dVttuGdV
t

tu
G xx xxξx

x
ξx ),(),(),(

~),(
),(

~ θ  
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∫∫∫∫∫ −+
V

jji
S

jji dVtqdSntqG xx ξxxxξx ),(
~

),(),(),(
~ δ .  (114) 

Rewriting Eq. (114), we have 

∫∫∫∫∫∫ =
∂

∂
V

jji
V

i dVtqdV
t

tu
G xx ξxx

x
ξx ),(

~
),(

),(
),(

~ δ  

∫∫∫−
V

jij dVttuG xxxξx ),(),(),(
~ θ  

∫∫−
S

jji dSntqG xxξx ),(),(
~

.    (115) 

Exchanging x  and ξ  in Eq. (115), we obtain a generalized 

integral representation of Eq. (38): 

∫∫∫∫∫∫ =
∂

∂
V

jji
V

i dVtqdV
t

tu
G ξξ xξξ

ξ
xξ ),(

~
),(

),(
),(

~ δ  

∫∫∫−
V

jij dVttuG ξξξxξ ),(),(),(
~ θ  

∫∫−
S

jji dSntqG ξξξxξ ),(),(
~

.     (116) 

Then, we can obtain ),( tui x  numerically, if we use the 

following process:  

),( tui x  is known →  ),( tji xθ  from Eq. (112) 

→  ),( tq ji x  from Eq. (105) →  ttui ∂∂ ),(x  

from Eq. (116) →  ),( dttui +x  from ttui ∂∂ ),(x  

→  add dt  to t  →  repeat.        (117) 

Numerical examples in two-dimension are given below. 

The initial condition is given by 























−








−==

22

82

1

82

1
exp)0,,()0,,(

B

y

L

x
yxvyxu . (118) 

We assume that L  is big enough, and the boundary 

condition is specified as 

0),,(),,( =±=± tBxutyLu ,          (119a) 

  

(a) α=0 and ini_fil=off 

 
(b) α=0 and ini_fil=on 

  

(c) α=0.01 and ini_fil=off 

 

(d) α=0.01 and ini_fil=on 

Figure 5. Rectangular initial density distribution (N=41).  

0),,(),,( =±=± tBxvtyLv .          (119b) 

The exact solution of two-dimensional Burgers’ equation is 

very difficult. Hence, we compare the numerical solutions by 

GIRM with those by FDM. 

In order to reduce spurious oscillation, it is effective to use 

the finer mesh, but it invites serious increase of computation 

time and memory. Addition of a numerical damping: 
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α    (120) 
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to )(n

jiu  and )(n

jiv  at every time step of the time evolution of 

)(n

jiu  and )(n

jiv , where α  is damping constant. Furthermore, 

if the discontinuity of initial density distribution invites 

serious errors, it is effective to replace )0(

jiu  and )0(

jiv  with a 

filtered value such as 













++++

++++

−−++

−−++

)0()0(

1

)0(

1

)0(

1

)0(

1

)0()0(

1

)0(

1

)0(

1

)0(

1

8

1

jijijijiji

jijijijiji

vvvvv

uuuuu
.       (121) 

For the reduction of computation time, numerical integrals 

including G  and 1δ  on the right hand sides of Eq. (112) and 

(116) with respect to ξ  are conducted in the neighborhood of 

x : 

∑ ∑∑∑
≤− ≤−

−

=

−

=
≈

bdwmi bdwnj

M

m

N

n

nmjiInmjiI
|| ||

1

0

1

0

),,,(),,,( .    (122) 

The parameters for numerical calculations are as follows: 

8== BL ; 41,21== NM ; MLdydx 2== ; 

dxyx 75.0== γγ ; 0025.0=dt ; dtT 4000= ; 

01.0=κ ; 0=U ; 0=α ; off_ =filini ; 3=bdw . (123) 

Numerical results are shown in Figs. 6, 7 and 8. The 

solutions by GIRM are similar to those by FDM. However, if 

we check carefully both results, the solutions by GIRM are 

more accurate than those by FDM. 

7. Conclusions 

In the present paper, Integral Representation Method (IRM) 

and Generalized Integral Representation Method (GIRM) are 

explained from very basic level to advanced level, and the 

relationships with other numerical methods such as Finite 

Difference Method (FDM) and Collocation Method (CM) etc. 

are clarified. 

 

(a) GIRM solution 

 

(b) FDM solution 

Figure 6. Exponential initial density distribution (N=21).  

  

(a) GIRM solution 

 

(b) FDM solution 

Figure 7. Exponential initial density distribution (N=31).  

 

(a) GIRM solution 
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(b) FDM solution 

Figure 8. Exponential initial density distribution (N=41).  

IRM is one of convenient methods to solve Initial and 

Boundary Value Problems (IBVP) [1-3]. It can be applied to 

irregular mesh, and the solution is stable and accurate. 

However, it was originally developed for linear equations with 

known fundamental solutions. We generalized IRM [4-6]. In 

GIRM, we have shown that the proper fundamental solution 

can be determined in advance. Determination of the 

fundamental solution in advance may always be possible. 

Usually, it is a good choice to use Gaussian function as the 

fundamental solution. 

In the present paper, the generalization of IRM was 

discussed not only from the theoretical viewpoint, but also 

from the computational aspect. GIRM was applied to one- and 

two-dimensional diffusion problems, and two-dimensional 

Burgers’ equation. The numerical results are stable and 

accurate. 

As the further direction, improvements of stability, 

accuracy and computational efficiency is very important [7,8]. 
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