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Abstract: This document was an opportunity for us to measure the contributions of researchers on the asymptotic behavior
of the extremes random variables. Beyond the available results, we have proposed an analysis of the behavior of the extremes
of random variables of geometric type. We succeeded in determining a subsequence which allows us to establish a convergence
in law of the extremes of this type of random variable while passing by the determination of a speed of convergence. We then
exposed the limited law which results from it then we called upon the copulas of the extreme values to propose a joint limited
law for two independent samples of random variables of geometric type. These results will allow us to analyze, in a document,
not only the convergence in moment of order of the other extremes of the random variables of geometric type but also the general
asymptotic behavior of the extremes of a serie of random variables with integer value. This document was an opportunity for us
to measure the contributions of researchers on the asymptotic behavior of the extremes random variables. Beyond the available
results, we have proposed an analysis of the behavior of the extremes of random variables of geometric type. We first made
the case of the fact that the random variables of geometric type could be constructed from the random variables of exponential
distribution and that they were not only integer variables but also that in general there were no sequences standards that allowed
their extremes to converge. To do this, we first built a convergent φ(k) subsequence which we then used to define a geometric
type Tφ(k) subsequence of random variables. We have also proved the convergence in distribution of the extremes of the random
variables Tφ(k). We have also exhibited the resulting limit law. Finally, in this document, we have dealt with the multivariate
case of random variables of geometric type. We considered two independent samples of random variables of geometric types.
Using a copula of extreme values, in particular the logistic copula, we proposed a joint limit distribution of two independent
samples of subsequences of geometric type random variables. We then exposed the limited law which results from it then we
called upon the copulas of the extreme values to propose a joint limited law for two independent samples of random variables of
geometric type.

Keywords: Asymptotic Convergence, Generalized Extreme Value Distribution, Exponantial and Geometric Distribution,
Extreme Values Copulas

1. Introduction
One of the objectives of actuaries is to model the occurrence

of rare events such as famine, wars, floods etc. Most often,

a family of continuous probability laws is used to model
extreme value phenomena. Let (Xn)n≥0 be a sequence of
independent and identically distributed random variables with
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common distribution function F. Let Xn is the unilateral
maximum of a sequence (Xn)n≥1 of real valued random
variables (r.v). Gnedenko’s Theorem teaches us that there
are sequences of strictly positive reals {an}n≤1 and reals

{bn} such that
Xn − bn
an

converges in law towards a limit

law, then the only possible limit laws, defined by their non
degenerate distribution function G. These are Generalized
Extreme Values laws.

The work of Z. Peng [13] and [7] are interested in
the convergence rate of the moments of extreme. As for
C.W. Anderson [4] and F. Thomas and al [5], their work
focused on the behavior of extremes for classes of discrete
random variables. [9] focus on Limiting forms of frequency
distribution of the largest or smallest member of a sample. As
for [10], they worked on extreme values and their links with
regularly varying functions.

For our part, we will focus, in this document, on the
asymptotic behavior of the extremes of random variables of
geometric type. These variables can be constructed from
random variables of the exponential type. Define the random
variable Tn = max{T1, ..., Tn}.
Tn is an integer random variable and (Tn)n≥1 is a sequence

of i.i.d random variable with same geometric law.
From J. Galambos [6] there are no standardization suites

an and bn such that
Tn − bn
an

converges in law when n tends

to infinity. Our aim in this document is to exhibit an and bn
then a integer values subsequence φ(k) in order to analyze the

convergence of
Tφ(k) − bφ(k)

aφ(k)
.

Subsequently, in this document, having the limit distribution
of a sequence of r.v of laws of geometric type, we will use the
copulas of the extreme values for a multivariate modeling of
the law of extremes of a certain number of random variables.

Let (X1, ..., Xn) a sequence of random variables
whose distribution function H(x1, ..., xn) is a law of
multidimensional extreme values. If F1,,, Fn are the marginal
laws of X1, ..., Xn, we have

H(x1, ..., xn) = C
(
Fl(x1), ..., Fn(xn)

)
where C is a copula of multidimensional extreme values.

Using C as a logistical copula, we offer a joint limited law
for two independent samples of random variables of geometric
type.

2. Preliminary

Let (Xn)n≥0 be a sequence of independent and identically
distributed random variables with common distribution
function F. Let Xn is the unilateral maximum of a sequence
(Xn)n≥1 of real valued random variables (r.v)

Xn := max{X1, · · · , Xn}, n ≥ 1 (1)

Let again φ be the cumulative distribution function (cdf) of
a real r.v and denote φ−1 the right inverse of φ

φ−1(t) := inf{s ∈ R, φ(s) > t}, t ∈]0, 1[ (2)

Let’s start by recalling the definition of the laws of Gumbel,
Frechet and Weibull.

Definition 2.1. Let G be a non-degenerate distribution
function given by

{
Gγ(x) = exp{−(1 + γx)−

1
γ } , 1 + γx ≥ 0 and γ 6= 0

G0(x) = exp{−exp(−x)}
(3)

Explicitly the three laws are given by:

G(x) = Λ(x) = e−e
−x
, x ∈ R (Gumbel law)

G(x) = e−x
−β
, x ≥ 0, β > 0 (Frechet law)

G(x) = e−(−x)β , x ≤ 0, β > 0 (Weibull law)

The following lemma states the Fisher-Tippet’s theorem
which establishes the conditions of convergence towards the
above limit laws.

Lemma 2.1. If there are sequences an > 0, bn ∈ R and a
non-degenerate distribution function H such that

lim
n−→∞

P
(Xn − bn

an
≤ x

)
= H(x), x ∈ R

then H belongs to one of the families of the three types
Gumbel, Frechet or Weibull laws.

For the proof of lemma (2.1), see [6].
In the literature,see [1, 2], it is proved that if (Xn)n≥1 is

a sequence of independent and identically distributed v.a then
we can find normalization sequences an and bn such that the
law of Xn−an

bn
converges to Gumbel’s law. We propose in

this document to analyze the asymptotic convergence of the
extremes of a sequence of v.a i.i.d of geometric law. Define
the random variable Tn = max{T1, ..., Tn}.
Tn is an integer random variable. (Tn)n≥1 is a sequence of

i.i.d random variable with same geometric law.
Let (Xi)i≥1 be a sequence of i.i.d random variable with

same exponential law, the following lemma allows to find bn
et an which applies the Fisher-Tippet theorem.

Lemma 2.2.
Let (Xi)i≥1 be a sequence of i.i.d random variable with same
exponential law and let Xn = maxi=1,...n{Xi}. There are
real sequences an et bn > 0 such us Xn−an

bn
converges in law

to a random variable Z of Gumbel.
Proof of Lemma (2.2)
Suppose X1,..., Xn be an i.i.d sequence with common

exponential distribution E(1). Let Xn = maxi=1,...n{Xi}.
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Consider reals sequences an and bn > 0

p = P (
Xn − an

bn
≤ x)

= P ( max
i=1,...n

{Xi} ≤ xbn + an)

= P (X1 ≤ xbn + an, ..., Xn ≤ xbn + an)

=

n∏
i=1

P (Xi ≤ xbn + an)

=
(
P (X ≤ xbn + an)

)n
but P (X ≤ x) = 1− e−x. It’s comes that

P (
Xn − an

bn
≤ x) =

(
1− e−xbn−an

)n
=
(

1− e−xbn

ean

)n
This sequence converges on one of the laws, Gumbel,

Frechet, Weibul. For an = l(n) et bn = 1, on a

lim
n−→+∞

P (
Xn − an

bn
≤ x) = lim

n−→+∞

(
1− e−xbn

ean

)n
= ee

−x

then
Xn − an

bn
converges to Gumbel’s law.

Suppose that (Tn)n≥1 will stand for a sequence of i.i.d. r.v.’s
valued in {1, 2, · · · } whose law satisfies (8), i.e.

G(k) = P (T1 > k) = aλk(1 + εk), ∀k ≥ 1 (4)

where G is the cdf of T1, a > 0, λ belongs to ]0, 1[ and
limk→∞ εk = 0. It is convenient to set

ρ := − lnλ. (5)

We wish to focus on the asymptotic law of extremes of a
geometric law. Thus the following sequence of real numbers
in [0, 1] will play an important role

un :=
lnn

ρ
−
⌊ lnn

ρ

⌋
, n ≥ 1. (6)

bxc = dxe − 1 is the integer part of x.
We will exhibit real sequences an and bn then a integer

values subsequences φ(k) in order to analyze the convergence

of uφ(k) and appreciate the convergence in law of Tφ(k)−bφ(k)aφ(k)

towards a limit distribution that we will determine .
Subsequently having the limit distribution of a sequence of
r.v of laws of geometric type, we will use the copulas of
the extreme values for a multivariate modeling of the law of
extremes of a certain number of random variables.

Definition 2.2. We call n-dimensional copula, any
multivariate distribution function C having for marginal the
uniform distribution on [0; 1].

Let (X1, ..., Xn) a tuple of random variables
whose distribution function H(x1, ..., xn) is a law of
multidimensional extreme values. If F1,,, Fn are the

marginal laws of X1, ..., Xn, we have H(x1, ..., xn) =

C
(
Fl(x1), ..., Fn(xn)

)
, where C is a copula of

multidimensional extreme values.
Authors in [14, 15, 16] have deduced the general shape of

multivariate extreme value copulas as follows:

C(u1, ..., un) = exp
{

(

n∑
i=1

log(ui))A
( log(u1)∑n

i=1 log(ui)

)}
(7)

ui ∈]0, 1[ ∀i ∈ {0, ..., n}. A is a convex function defined on
[0, 1]. The function A has a important role in the study of the
extremal behavior of a pair of (U, V ) with joint distribution C.
It expresses the natural tendency of v.a U and V to take large
values simultaneously. A good estimate of A is quite critical
for its use. Authors like [8] and [3] tell us more about this
topic.

3. Main Results

Theorem 3.1. Let (Tn)n≥1 be a sequence of iid rv with
values in {1, 2, ...} and with the same pseudo-geometric
distribution given by

P (T1 > k) = aλk(1 + εk) (8)

where a > 0, λ ∈]0, 1[ and limk−→∞ εk = 0. Thus
1. We define for u ∈ [0, 1]

(φk)k≥1 =
(⌊
exp{(k + u)ρ}

⌋
+ 1
)
k≥1

(9)

Then,

Tφk − 1−
⌊ ln(φk)

ρ

⌋
converges in law to

⌊
u+

Z + ln(a)

ρ

⌋
when k −→∞ (10)

Z is rv with Gumbel’s law.
2. Conversely, if there is a subsequence φk ↑ ∞ such us

Tφk − 1−
⌊ ln(φk)

ρ

⌋
converges in distribution then we

can find u ∈ [0, 1] as we have (10).
Proof of Theorem 3.1 Let (Tn)n≥1 is a sequence of i.i.d

random variable with same geometric law.
We stated in the introduction that from J. Galambos there

are no standardization sequences an and bn such that
Tn − bn
an

converges in law when n tends to infinity.
How we can analyze the asymptotic behavior of Tn n ≤ 1.
Let us first construct a sequence of random variable(r.v) of
geometric type from a series of r.v of exponential law.

Lemma 3.1. Let X1, ..., Xn be a sequence of iid r.v with
common exponential law E(1) then there are real constants a
and b such us Ti = bXi−ab c be an geometric r.v.

Moreover
P (Ti = k) = λk−1(1− λ)
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Proof of Lemma (3.1)
Consider X1, ..., Xn a sequence of iid rv with common

exponential law E(1). Let a and b be real constants. let’s

suppose that Ti = bXi − a
b
c

P (Ti = k) = P
(
bXi − a

b
c = k

)
= P

(
bXi

b
c − ba

b
c = k

)
= P

(
bXi

b
c = k + ba

b
c
)

= P
(
k + ba

b
c ≤ Xi

b
< k + ba

b
c+ 1

)
= P

(
kb+ bac ≤ Xi < kb+ bac+ b

)
= 1− e−kb−bac−b − 1 + e−kb−bac

= e−kb−bac − e−kb−bac−b

P (Ti = k) = e−kb
(
e−bac − e−bac−b

)
Let b = − ln(λ) and a = ln(λ). Then

P (Ti = k) = ek ln(λ)
(
e−bλc − e−bln(λ)c+ln(λ)

)
P (Ti = k) = λk(

1

λ
− 1) = λk−1(1− λ)

We deduce that Ti is a rv of geometric type. The lemma is
proven. we can express: Let (Tn)n≥1 be a sequence of i.i.d
random variable with same geometric law. Then we have

Tn = max
1≤i≤n

{Ti} = max
1≤i≤n

{⌊Xi

ρ

⌋
+ 1
}

=
⌊

max
1≤i≤n

{Xi

ρ

}⌋
+ 1 =

⌊Xn

ρ

⌋
+ 1 (11)

Consider the following lemma:
Lemma 3.2. For any u ∈ [0, 1] there exists a subsequence

(φ(k)) such that lim
k→∞

uφ(k) = u.

Proof of Lemma(3.2) Let X1, ..., Xn be a sequence of
i.i.d r.v with common exponantial law E(1). Let Xn =
maxi=1,...n{Xi}. We have shown that Xn − ln(n) converges
in distribution to a Gumbel variable Z.

Let Ti =
⌊
Xi
ρ

⌋
+ 1 a random variable of geometric type.

Consider the following sequence

un =
ln(n)

ρ
−
⌊ ln(n)

ρ

⌋
.

It is clear that un ∈ [0, 1]. Let a subsequence φ(k) such as
lim
k→∞

uφ(k) = u.

1. Let us first show that the set of adhesion values of the
sequence (un)n≥1 is [0, 1]. Let 0 ≤ α < β ≤ 1 such

that α < un < β. Let k =
⌊
ln(n)
ρ

⌋
.

We have α + k < ln(n)
ρ < β + k =⇒ eρ(α+k) < n <

eρ(β+k).

A necessary condition for the existence of n is that:

eρ(β+k) − eρ(α+k) ≥ 1. (12)

On this basis, there exists an integer dependent on k such
that α < un < β. Consider that this integer is denoted
by φ(k).

2. Now let’s build φ(k).
The condition (12) implies that k ≤ 1

ρ ln
(

1
eρβ−eρα

)
.

Let q =
⌊
ln(n)
ρ

⌋
+ 1 such as for all k ≤ 2, we have

k > q.
Suppose φ(k) =

⌊
eρ(α+k)

⌋
.

We have successively :

e(k+α)ρ ≤ φ(k) < e(k+α)ρ + 1 < e(k+β)ρ

and

k + α ≤
ln
(
φ(k)

)
ρ

< k + β.

Since (α, β) 6= (0, 1), the above inequality implies that⌊ ln
(
φ(k)

)
ρ

⌋
= k.

As result

uφ(k) =
ln
(
φ(k)

)
ρ

−
⌊ ln

(
φ(k)

)
ρ

⌋
belongs to [α, β].
This proves that {un, n ≥ 1} = [0, 1].

This is the proof of lemma(3.2).
So for all u ∈ [0, 1], we deduce that for φ(k) thus as defined

we have limk−→∞ uφ(k) = u. Consider following lemma of
convergence with subsequence (φ(k))k≥1.

Lemma 3.3. Let (Tn)n≥1 be a sequence of i.i.d random
variable with same geometric law. Suppose that for all u ∈
[0, 1], there is a subsequence φ(k) such as

lim
k−→∞

ln
(
φ(k)

)
ρ

−
⌊ ln

(
φ(k)

)
ρ

⌋
= u.

Then

Tφ(k) − 1−
⌊ ln(φ(k))

ρ

⌋
converges in law to

⌊
u+

Z + ln(a)

ρ

⌋
when k −→∞

Proof of Lemma(3.3) Let X1, ..., Xn be a sequence of i.i.d
r.v with common exponantial law E(1) and let Tn =

⌊
Xn
ρ

⌋
+1

be is a sequence of i.i.d random variable with same geometric
law. Let’s introduce the sequence un = ln(n)

ρ −
⌊
ln(n)
ρ

⌋
, we

have shown that for all u ∈ [0, 1], there is a subsequence φ(k)
such as limk−→∞ uφ(k) = u.

From the previous lemmas, we realized that:
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If Xn = max1≤i≤n{Xi} then

Xn − ln(n) converges in law to Gumbel’s law

Γ(x) = e−e
−x
, x ≥ 0.

Let Zn = Xn − ln(n), it comes that

Tφ(k) =
⌊Zφ(k)

ρ
+

ln(φ(k))

ρ

⌋
+ 1

=⇒ Tφ(k) =
⌊Zφ(k)

ρ
+
⌊ ln(φ(k))

ρ

⌋
+ uφ(k)

⌋
+ 1.

so

Tφ(k) =
⌊Zφ(k)

ρ
+ uφ(k)

⌋
+
⌊ ln(φ(k))

ρ

⌋
+ 1

=⇒ Tφ(k) −
⌊ ln(φ(k))

ρ

⌋
− 1 =

⌊Zφ(k)
ρ

+ uφ(k)

⌋
.

Moreover

Zφ(k)

ρ
+ uφ(k) converges in law to Z

ρ + u.

So it comes that:

Tφ(k) −
⌊ ln(φ(k))

ρ

⌋
− 1 converge in law to

⌊
Z
ρ + u

⌋
End of proof. Let us now prove the converse. Consider first

the lemma
Lemma 3.4.

Let T be a {1, 2, · · · }-valued r.v. with cumulative distribution
function φ. Then T is distributed as φ−1

(
1 − e−X

)
where X

is a r.v. with exponential distribution.
The proof of Lemma 3.4 is classical since the law of 1−e−X

is uniform over [0, 1]. Let’s use the following general result:
Lemma 3.5. Consider a real valued sequence (yk)k≥1

converging at infinity to a real number y. We suppose that
y does not belong to {pρ− uρ− ln(a), p ∈ Z}, then for large
k

F−1
(

1− 1

φ(k)
e−yk

)
−1−

⌊ ln(φ(k))

ρ

⌋
=
⌊
u+

1

ρ

{
y+ln a

}⌋
.

(13)
The proof of this lemma is given by
Proof of Lemma (3.5)

It is clear that lim
k→∞

1

φ(k)
e−yk = 0. Therefore

mk := F−1
(

1− 1

φ(k)
e−yk

)
goes to infinity as k →∞ and

lim
k→∞

ln(1 + εmk) = lim
k→∞

ln(1 + εmk−1) = 0.

Using moreover the definition of un (cf (6)) we deduce :

lim
k→∞

m′k = lim
k→∞

m′′k = u+
1

ρ

{
y + ln a

}
where

m′k =
1

ρ

{
ln(φ(k)) + yk + ln a+ ln(1 + εmk)

}
−

⌊ ln(φ(k))

ρ

⌋

m′′k =
1

ρ

{
ln(φ(k)) + yk + ln a+ ln(1 + εmk−1)

}
−

⌊ ln(φ(k))

ρ

⌋
Using Lemma (3.2) we get

m′k − 1 < mk − 1−
⌊ ln(φ(k))

ρ

⌋
≤ m′′k .

Our assumption over y implies that x := u+
1

ρ

{
y + ln a

}
is not an integer. Therefore the only one integer in the interval
[x− 1, x] is bxc.

The result follows immediately.
This lemma is proven.
Proof of Lemma (3.4) In this lemma, we only deal with the

distribution of (Tn)n≥1 we can suppose that

Tn = G−1
(
1− e−Xn

)
, n ≥ 1. (14)

The function G−1 being non-decreasing we deduce :

Tn = G−1
(
1− e−Xn

)
, n ≥ 1.

From Resnick [11] Xn− lnn converges in distribution to Z
as n goes to infinity . It is clear that the above identity can be
written in the following form :

Tn = G−1
(

1− 1

n
e−(Xn−lnn)

)
.

From the Skorokhod theorem [1], we can find a sequence
(Wn)n≥1 such that for any n, the r.v. Xn − lnn is distributed
as Wn and (Wn)n≥1 converges almost surely to a r.v. W .
Obviously W and Z have the same law. Therefore, for any
n, Tn is distributed as G−1

(
1 − 1

ne
−Wn

)
. With any lost of

generality we can suppose :

Tn = G−1
(

1− 1

n
e−Wn

)
, n ≥ 1. (15)

The above identity (15) is the key of the proof of Theorem
3.1.

We suppose there exists a subsequence (φ(k))k≥1 such that:

Tφ(k)−1−
⌊ ln(φ(k))

ρ

⌋
converges in law as k →∞. (16)
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We claim that vk := uφ(k) = ln(φ(k))
ρ −

⌊
ln(φ(k))

ρ

⌋
is a

convergent sequence. Since vk belongs to [0, 1], it is equivalent
to show that if φ, ψ : N → N are two increasing functions
such that limi→∞ vφ(i) = u and limi→∞ vψ(i) = u′, then
u = u′.

We can note that

Tφ(i) − 1−
⌊ ln(φ(i))

ρ

⌋
converges in distribution to

⌊
u+

Z + ln a

ρ

⌋
as i→∞

and

Tψ(i) − 1−
⌊ ln(ψ(i))

ρ

⌋
converges in distribution to

⌊
u′ +

Z + ln a

ρ

⌋
as i→∞

Therefore,
⌊
u + Z+ln a

ρ

⌋
and

⌊
u′ + Z+ln a

ρ

⌋
have the same

distribution. The result follows using following lemma with
ξ := u ∧ u′ + Z+ln a

ρ and τ := |u− u′|.
These results allow us to ensure the convergence in law of

the extremes of r.v of geometric type.
End of proof.
In what will follow, we will analyze the convergence in law

of extremes of r.v Tφ(k) of geometric type according to the
exhibited subsequences. We arrive at the result.
Consider (X1, ..., Xn) et (Y1, ..., Ym) independent samples of
r.v. Tn =

⌊
Xn
ρ1

⌋
+ 1 et T ′m =

⌊
Ym
ρ2

⌋
+ 1

Theorem 3.2.

Let Tn =
⌊
Xn
ρ1

⌋
+ 1 et T ′m =

⌊
Ym
ρ2

⌋
+ 1 and if there

is a1, a2, b1, b2 real numbers such as Tφ(k)−a1
b1

et T ′φ(k)−a2
b2

converges respectively to T (of distribution F ) and T’(of
distribution G) then the joint distribution of

(
T, T ′

)
through

the logistic copula is given by

Hθ(x, y) = exp
{
−
(
exp{−ρ1θ(bxc − u+ 1)}

+ exp{−ρ2θ(byc − v + 1)}
)}

(17)

Proof of Theorem (3.2) Consider first the following lemma
Lemma 3.6. Let φ(k) previously defined as
1. uφ(k) converges to u when k −→ +∞ and
2. Tφ(k) converges in law to T

Then

sup
x∈R

∣∣∣Fφ(k)(x)− F (x)
∣∣∣ ≤ 2e−2 + 1

φ(k)− 1
. (18)

Proof of Lemma (3.6) Suppose k is large enough. We have
lnφ(k)
ρ /∈ N and so

Fφ(k)(x)− F (x) = Λφ(k)

(
ρ(bxc − uφ(k) + 1)

)
− Λ

(
ρ(bxc − u+ 1)

)
∣∣∣Fφ(k)(x)− F (x)

∣∣∣ ≤ ∣∣∣Λφ(k)(ρ(bxc − uφ(k) + 1)
)

− Λ
(
ρ(bxc − uφ(k) + 1)

)∣∣∣
+

∣∣∣Λ(ρ(bxc − uφ(k) + 1)
)

− Λ
(
ρ(bxc − u+ 1)

)∣∣∣
Thus:

0 ≤ ρ(bxc−u+ 1)− ρ(bxc−uφ(k) + 1) < exp{−ρ(k+u)}

Let wn(t) = bxc − un + 1 and w(t) = bxc − u + 1. We
have:

Γφ(k) =
∣∣∣Λ(ρwφ(k)(x)

)
− Λ

(
ρw(x)

)∣∣∣
≤ sup

ρw(x)<z<ρwφ(k)(x)

Λ′(z)
(
ρw(x))− ρwφ(k)(c)

)
≤ sup

ρbxc<z<ρdxe
Λ′(z)exp{−ρ(k + u)}

=
(

Λ′(ρbxc)1{x≥0} + Λ′(ρdxe)1{x<0}

)
× exp{−ρ(k + u)}

≤
eρbxc1{x≥0} + e−ρdxe−e

−ρdxe
1{x<0}

φ(k)− 1

≤ 1

φ(k)− 1
.

Consider again that

Γn = sup
x∈R

∣∣∣Λn(x)− Λ(x)
∣∣∣

= sup
x∈R

∣∣∣(1− e−x

n

)n
1[− lnn,∞[(x)− e−e

−x
∣∣∣

= sup
y≥0

∣∣∣(1− y

n

)n
1[0,n](y)− e−y

∣∣∣
≤ (2 +

1

n
)e−2n−1

According to Hall and Wellner [12], by combining the two
inequalities, we obtain

supx∈R

∣∣∣Fφ(k)(x)− F (x)
∣∣∣ ≤ 1

φ(k)− 1
+

(2 + 1
φ(k) )e

−2

φ(k)

≤ 2e−2 + 1

φ(k)− 1
. (19)

This is the proof of lemma (3.6).
Consider
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Lemma 3.7. Let F and G be distribution functions given
respectively by

F (x) = Λ[ρ1(bxc − u+ 1)]

and
G(x) = Λ[ρ2(byc − v + 1)]

Let Cθ be bivariate copula of the extremes with the pickand
dependency function

Aθ(t) =
[
tθ + (1− t)θ

] 1
θ

(θ > 1)

Then

Cθ(F (x), G(y)) = exp
{
−
(
exp{−ρ1θ(bxc − u+ 1)}

+ exp{−ρ2θ(byc − v + 1)}
)}

Proof of Lemma (3.7)
Let F and G be distributions functions of r.v given by

F (x) = Λ[ρ1(bxc − u+ 1)]

and
G(x) = Λ[ρ2(byc − v + 1)]

Define the bivariate logistics copula by

Cθ(u, v) = exp
{(

log(u) + log(v)
)
A
( log(u)

log(u) + log(v)

)}
;

Aθ(t) =
[
tθ + (1− t)θ

] 1
θ

(θ > 1)

This copula allows us to measure the dependence of the
rarest events.

Cθ(u, v) = exp
{(

log(u) + log(v)
)

×
[( log(u)

log(u) + log(v)

)θ
+

(
1− log(u)

log(u) + log(v)

)θ] 1
θ
}

= exp
{(

log(u) + log(v)
)

×
[( log(u)

log(u) + log(v)

)θ
+

( log(v)

log(u) + log(v)

)θ] 1
θ
}

= exp
{(

[log(u)]θ + [log(v)]θ
) 1
θ
}

With reference to the F and G margins defined by

F (x) = Λ[ρ1(bxc − u+ 1)]

= exp
(
− exp{−ρ1[bxc − u+ 1]}

)

and

G(x) = Λ[ρ2(byc − v + 1)]

= exp
(
exp{−ρ2[byc − v + 1]}

)
It comes that

Cθ(F (x), G(y)) = exp
{
−
(
exp{−ρ1θ(bxc − u+ 1)}

+ exp{−ρ2θ(byc − v + 1)}
)}

End of proof.
Lemmas (3.6) and (3.7) complete the proof of the theorem

(3.2).

4. Conclusion
In this article, we have analyzed the asymptotic behavior

of the extremes of a sequence of independent and identically
distributed random variables according to a geometric type
law. For this purpose, we have constructed a convergent
subsequence and this has enabled us to exhibit a subsequence
of geometrical and independent random variables which
converges in distribution. Finally, we have examined, through
the copula of extreme value, the joint limit law of two
independent samples of random variables of geometric type.
These results will allow us to analyze, in a another document,
not only the convergence in moment of order of the other
extremes of the random variables of geometric type but also
the general asymptotic behavior of the extremes of a series of
random variables with integer value .
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