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Abstract: We establish a new straightforward interpolation method for solving linear Volterra integral   equations with weakly 

singular kernels. The proposed method is fundamentally different from all other published methods for solving this type of 

equations. We have modified some vector-matrix barycentric Lagrange interpolation formulas to be convenient for 

interpolating the kernel twice concerning the two variables of the kernel and introducing new ideas for selecting interpolation 

nodes that ensure isolation of the singularity of the kernel. We create two rules for selecting the distribution nodes of   the two 

kernel variables that do not allow the   denominator of the kernel to contain an imaginary value. We interpolate the unknown and 

data functions   into the corresponding interpolant polynomial; each of the same degree via three matrices, one of   which is a 

monomial. By applying the presented method based on the two created rules, we transformed the  kernel into a 

double  interpolant polynomial with a degree equal to that of the unknown  function via five matrices, two of  which are 

monomials. We substitute the interpolate unknown  function twice; on the left side and on the  right side of the integral equation 

to get an  algebraic linear system without applying the  collocation method. The solution of this system yields  the unknown 

coefficients matrix that is necessary to find the interpolant solution. We  solve three  different examples for different values of 

the upper integration variable. The obtained  results as  shown in tables and figures prove that the obtained interpolate solutions 

are extraordinarily faster   to converge to the exact ones using interpolants of lowest degrees and give better results than those 

obtained by  other  methods. This confirms the originality and the potential of the presented method.  

Keywords: Lagrange Interpolation, Singular Integral, Weakly Singular Volterra Kernels, Computational Methods, 

Vandermonde Matrix, Scattering, Radiation, Image Processing 

 

1. Introduction 

In this study, we present an interpolation method to find 

the interpolate solution of the linear second kind weakly 

singular Volterra integral equation of the second kind. The 

method is based on the application of Lagrange interpolation 

through the Vandermonde matrix with the analytical 

treatment of the kernel singularity. The complete isolation of 

the kernel singularity was accomplished through two rules 

that we created to control the strategy of selecting the 

variables distribution nodes in a way that ensures that there 

are no negative or zero quantities under the square root sign. 

First, we emphases that the successive emergence of the 

application of the integral equation method in many scientific 

fields, and more recently in the sciences of artificial 

intelligence, genetic engineering, nanotechnology, 

thermodynamics, virology, and epidemiology prompted 

researchers to search for methods adapting to the 

mathematical properties of each integral equation and, in 

particular, to the behavior of the kernel at the boundary 

points of the integration [1-3]. One of the most important 

advantages of the integral equation method is that it can 

transform the solution of initial, boundary, and mixed value 

problems for a partial differential equation in two 

independent variables, into one boundary integral equation 

involving an unknown function of only one variable. We 

need to find solutions of the integral equations that fit the 

imposed conditions on each value problem which satisfies 

the mathematical properties of the data function, the kernel, 

and the unknown functions that form the equivalent integral 

equation. In this study, we focus on solutions of weakly 

singular Volterra integral equations of the second kind. 
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( ) ( ) ( ) ( ) [ ],  ; : ,

x

a

u x f x k x t u t dt x I a b= + ∈ =∫           (1) 

where ( )f x  is given real continuous function on the domain 

I ( ), ,k x t  is given a continuous kernel on the domain 

( ){ }, :x t a x t bΩ = ≤ ≤ ≤  where b  is a real positive number. 

For the weakly singular kernel ( ),k x t , it is usually given in 

the form ( ) ( )
( )

,
,

g x t
k x t

x t
α=

−
 where 0 1α< <  with the 

assumption that 2
( , )k x t M≤ < ∞  where ,x t ∈ Ω . Here, 

( )u x  is the unknown function to be determined. The 

Volterra operator which is defined by ( ) ( ),

x

a

u k x t u t dtΤ = ∫ , 

is acting in [ ]
2

,L a b . In this type of equation, we are faced 

with the problem of how to overcome the kernel singularity 

near and at the endpoints of the integration domain [4]. For 

the weakly singular linear Fredholm integral equation of the 

first kind, Shoukralla et al. [5-10], treated the singularity of 

the kernel near and at the endpoints of the integration domain 

and provided numerical solutions to the first-kind Fredholm 

integral equation which contains a weakly singular 

logarithmic kernel, using various techniques with 

applications of orthogonal functions such as monic and 

economized monic Chebyshev polynomials and other special 

functions. However, it was difficult to apply these techniques 

to equation (1) in terms of the different properties of the 

weakly singular kernel of the Volterra equation, in addition to 

the fact that the endpoint of the limit of integration is a 

variable and not a constant like the Fredholm equations. For 

the non-singular linear Volterra equations of the second kind, 

Shoukralla et al. [11-13] modified the barycentric Lagrange 

interpolation formula [14, 15], through matrices, and for the 

first time, with remarkable success, they solved non-singular 

linear Volterra equations of the second kind using different 

techniques and obtained exact numerical solutions or 

strongly convergent solutions depending on the smoothness 

of the kernel and the given data functions. Recently, many 

methods and various techniques have spread to find 

numerical solutions to weakly singular Volterra integral 

equations of the second kind [16-20]. Zhang Xiao-Yong [16] 

introduced a Jacobi spectral method for the solution of 

Volterra integral equations of the second kind with a weakly 

singular kernel. The author provided a different technique 

than the spectral-collocation method based on the advantage 

of the property of orthogonal polynomials. Can Huang et al. 

[17] applied the spectral Galerkin polynomial method and a 

variant with the trial and test space is augmented by suitably 

chosen functions, besides the Sloan iterations of both 

methods for solving the second kind weakly singular linear 

Volterra integral equations. They proved the convergence 

rates for all these methods. Lina Wang et al [18] presented 

and realized a certain hp-version of the DG approach for the 

linear Volterra integral equation of the second kind with 

weakly singular kernels. They applied the piecewise and 

discontinuous polynomials to trial and test spaces of the DG 

method. They developed two improvement tools for the 

singularity of the solution at and near the initial point of the 

integration domain. Jingjun Zhao et al. [19], solved the 

weakly singular Volterra integral equations of the first kind 

by using smoothing transformations and then applied the 

super implicit multistep collocation. Hossein et al. [20] 

applied the multi-projection method and developed a fully 

discretized version using specific quadrature rules upon using 

collocation projection techniques. This yields a super 

convergence solution of Volterra integral equations of the 

second kind with weakly singular kernels. The main goal of 

this paper is to apply the Lagrange interpolation formula via 

the Vandermonde matrix to interpolate both the unknown and 

the given data functions by interpolating polynomials of the 

same degree n. Thus, each of these is expressed via three 

matrices; the first is the functional values, the second is the 

known Vandermonde matrix, and the third is the monomial 

basis functions matrix of the main argument. For 

interpolating the weakly singular kernel we developed an 

approach based on two rules. First, we divided the integration 

domain into two sub-domains. On the right half domain, we 

interpolate the kernel concerning the variable x  to obtain 

interpolant polynomial of degree n  and on the left half 

domain, we interpolate the kernel concerning the second 

variable t  to obtain another interpolating polynomial of the 

same degree n . We achieve this idea by choosing the two 

sets of nodes { }
0

n

i i
x =  and { }

0

n

j
j

t
=

 so that we ensure that the 

denominator of the kernel never approaches zero or becomes 

imaginary for any value of the nodes ix  and jt . To 

implement this aim, we define the step-sizes for each { }
0

n

i i
x =  

depending on the some real numbers 1 0δ ≥  and { }
0

n

j
j

t
=

 

depending on some real numbers 2 0δ ≥  depending on some 

real numbers 1 0δ ≥ , such that the value of each 

0 ; 1, 2i iδ ≥ =  is depending on the value of the parameter b  

and the degree n  of interpolant kernel. These rules are valid 

for any values of b and also valid for 2n ≥ . To simplify the 

procedure and represent the double interpolant kernel 

through five matrices, we reverse the order of the three 

matrices of the second single interpolant kernel and multiply 

the result by the first three matrices of the first single 

interpolant kernel. Thus, we obtain a double interpolant 

kernel of degree n n×  through five matrices, two of which 

are monomial basis functions matrices for the variables x

and t  respectively, two are the Vandermonde matrices for x  

and t  respectively, and the fifth matrix is a square known 

coefficients matrix. To transform the solution (unknown 

function ( )u x ) of (1) into the solution of a linear algebraic 

system of equations we substitute the single interpolant 

polynomial in both sides of (1), and by taking into account 

the substitution of the double interpolate kernel, and the 

single interpolate data function on the right-hand side of (1). 
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The direct solution of this system yields the unknown 

coefficient matrix and thereby we can find the unknown 

matrix itself. We solved three different examples for different 

values of b  and for 2n = . We estimated the limits of the 

obtained interpolant solutions at 0x →  and estimated the 

maximum error on each subinterval corresponding to the 

value of b . The obtained results are compared with the exact 

solution and tables are constructed including also the 

absolute and relative errors. From the given tables and 

figures, it turns out that the obtained interpolate solutions are 

strongly and faster converging to the exact solution than the 

solution obtained by using other methods. This proves the 

originality of the presented new method and its distinction in 

giving accurate solutions for the lowest possible degree of 

the interpolant solution. 

2. Interpolation Method 

Let ( ) [ ]1 ,nu x C a b+∈  and ( )nu x  be the Lagrange 

interpolating polynomial of degree n  that interpolates ( )u x  

at the ( )1n +  equally spaced distinct nodes { } [ ]
0

,
n

i i
x a b= ⊂ . 

By choosing a step size 0h >  such that 
b a

h
n

−= , we get 

the required ( )1n +  equidistant interpolation nodes 

 ;   ;  , 0,i jx a ih t a jh i j n= + = + = . The presented method 

relies directly on the Lagrange interpolation theory and not 

on the barycentric Lagrange interpolation. We will express 

the interpolation Lagrange formula through what is called the 

Vandermonde Matrix, and use this idea to interpolate the 

unknown and the given functions ( )u x  and ( )f x , as we use 

it to interpolate the kernel twice, which makes us at the end 

of the solution procedures get an algebraic system of linear 

equations. Solving this system yields the matrix of unknown 

coefficients and then we can get the interpolant polynomial 

which interpolates the unknown function. Let ( )nu x  be the 

Lagrange interpolating polynomial of degree n  that 

interpolates ( )u x  at the ( )1n +  equally spaced distinct 

nodes { } [ ]
0

,
n

i i
x a b= ⊂  such that ( ) ( )  0,n i i iu x u x u i n= = ∀ = . 

By choosing a step size 0h >  such that,
b a

h
n

−=  we can get 

the ( )1n +  equidistant interpolation nodes 

 ;  0,ix a ih i n= + = . We begin by pouting t ( )nu x  in the 

form 

( )
0

; 0,

n
j

n j

j

u x a x j n

=

= =∑                            (2) 

In matrix form, we get 

( ) ( )UPnu x x=                                 (3) 

Here 
0

U=
n

j
j

a
=

 
   is the unknown coefficients row matrix 

of order ( )1 1n× + , ( )
0

P
n

j

j
x x

=
 =    is the ( )1 1n + ×  

monomial basis functions column matrix. The unknown 

coefficients { }
0

n

j
j

a
=

 are determined by solving the linear 

algebraic system of equations 

XU A=                                          (4) 

Where A  is the column matrix ( )
0

A
n

i i
u x

=
 =   , where 

( ){ }
0

,
n

i i i
x u x

=
; ix a ih= +  are the interpolation knots that 

interpolate ( )u x , whereas the Vandermonde square matrix 

X  is given by 

, 0
X= ; ,  1   0 : , 0i

n j
ij ij ij

i j
b b x b i n j

=
  = = ∀ = =             (5) 

By virtue of (4) we can find ( )nu x  in the following 

matrix-vector single interpolant form 

( ) ( ) ( )1A XP ; X X .
T

T
nu x x −= =ɶ ɶ                    (6) 

similarly, the given data function ( )f x  can be interpolated 

like ( )u x  to get the matrix-vector single interpolant ( )nf x  

in the matrix form 

( ) ( )F XPT
nf x x= ɶ                                (7) 

where ( )
0

F
nT

i i
f x

=
 =    is the row matrix of the order 

( )1 1n× + . The kernel ( ),k x t  will be interpolated twice 

corresponding to x , and. .. First, we divided the integration 

domain [ ],a b  to become 1 2 ,
2 2

b a b a
a bδ δ− −   + − ∪ +   
   

 

for some real numbers 1 2, 0δ δ ≥  such that ( )1 1 nδ δ=  and 

( )2 2 nδ δ= , where n  is the interpolant degree. To 

interpolate the kernel while retaining x t> , we have to set 

the rules that ensure this procedure overcomes any 

singularity of the kernel when x t→  and when 0x → . We 

interpolate ( ),k x t  with respect to x  on the right-half 

interval and with respect to t  on the left-half interval. Let 

( ) 2b a∆ = − / . Then we choose the two sets of nodes 

{ }
0

n

i i
x =
ɶ  and { }

0

n

j
j

t
=

ɶ  as follows 

( ) ( )1 1 1 1
1

1 ; 1 2  ; ; 0i

b
x i h h b n

n
δ δ δ λ

λ
= ∆ + + × = − ∆ − = ≥ɶ /  (8) 

and 
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( ) ( )2 2 2 2
2

2 ; 2 2  ; ; 0j

b
t a j h h a n

n
δ δ δ λ

λ
= + + × = + ∆ − = ≥ɶ /  (9) 

Analogical to (6) and (7), we get the matrix-vector single 

interpolate kernel ( ),nk x t  of degree n  that corresponding 

the set of nodes { }
0

n

i i
x =
ɶ  in the form 

( ) ( ) ( )1, P X , .T
n ik x t x x t−= Κ ɶ                         (10) 

Where ( ),ix tΚ ɶ  is the ( )1 1n + ×  column matrix 

( ) ( ) ( ) ( )0 1, , , ... ,
T

i nx t k x t k x t k x t Κ =  ɶ ɶ ɶ ɶ          (11) 

Now, each entry of the entries set ( ){ }
0

,
n

i i
k x t

=
ɶ  will be 

interpolated corresponding to the variable t  according to the 

set of nodes { }
0

n

j
j

t
=

ɶ  given by (9). Without going into 

substitutions steps upon using the matrix-algebra, we invert 

the order of the matrices of the second interpolation and 

multiplying by the first interpolation from the right side, so 

we get the matrix-vector double interpolate kernel ( ), ,n nk x t  

in the form 

( ) ( ) ( )1 1
, , P X PT

n nk x t x t− −= ΚΤɶ                     (12) 

From (6) and (12), we get 

( ) ( ) ( ) ( )1 1 1
, , P X X AT

n n nk x t u t x t− − −= ΚΤ Ρɶ ɶ            (13) 

Where 
, 0

n

ij
i j

k
=

 Κ =    is the ( ) ( )1 1n n+ × +  square known 

matrix whose entries are determined by

( ),   , 0 :  ij i jk k x t i j n= ∀ =ɶɶ ( ) ( ) ( )
, 0

=P P
n

T i j

i j
t t t t +

=
 Ρ =  

ɶ  is 

the ( ) ( )1 1n n+ × +  square matrix. 

Consequently, by replacing ( )nu x  given by (6) with ( )u t  

in the right side of Eq. (1) we find that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1

0

1 1 1

0

P X X A   ; 

P X X A  ;  

x
T

T
n

x

T

u x f x x t dt

f x x x x t dt

− − − − −

− − −

= + ΚΤ Ρ Τ = Τ

= + ΚΤ Φ Φ = Ρ

∫

∫

ɶ ɶ ɶ

ɶ ɶ

   (14) 

By replacing ( )u x  with ( )nu x  given by (6) into the left 

side of (1) and by ( )nu t  into the right side, besides replacing 

( ),k x y  with ( ), ,n nk x t  given by (13) and ( )nf t  given by (7) 

with ( )f t  we get 

( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 1 1

1 1

P X X A P X X A

P X X F

T T

T T

x x x x

x x

− − − − − −

− −

ΚΤ Φ − ΚΤ Φ

= ΚΤ Φ

ɶ ɶ ɶ

ɶɶ
  (15) 

where 

( ) ( ) ( )1 1P X

x

a

x t t dt− −Φ = ΚΤ Φ∫ ɶɶ ɶ                    (16) 

Simplifying (15), we get the unknown coefficient matrix 

A  of the interpolate solution ( )nu x  given by (6) by solving 

the linear algebraic system 

( ) ( )( ) ( ) ( )1 1 1X A X F  ; X X
T

x x x− − −Φ − Φ = Φ =ɶɶ      (17) 

Let 

( ) ( )( )( ) ( ) ( )( )1 11 1
 X Xx x x x

− −− −Ν = Φ − Φ = Φ − Φɶ ɶ    (18) 

Hence, we get 

( ) ( )( ) ( )1 1A X X F x x x
− −= Φ − Φ Φɶ                 (19) 

Substituting the matrix A  into (6), we get the required 

solution in the matrix form 

( ) ( ) ( ) ( ) ( )( ) ( )11 1P X A P X F T T
nu x x x x x x

−− −= = Φ − Φ Φɶ  (20) 

3. Computational Results 

We designed a MATLAB code to find the interpolant 

solution ( )nu x  for 2n ≥  and for any value of the parameter 

b . We solve three examples and finding ( )2u x  for 

0.1,0.2,0.4,0.6b = . We have chosen 2n =  to avoid the 

complicated roundoff error due the calculations for 3n ≥ . 

Upon using (7) and (8), we set 1 2 3λ λ= =  and 

0.1,0.2,0.4,0.6b =  for the three examples. We have chosen 

the values of the parameters 1 2,δ δ  depending on b , and n . 

For the three examples we denote the absolute error by 

( ) ( ) ( )2 2
b b

i i iR x u x u x= − , where ( )iu x  denotes the exact 

solution values and ( )2
b

iu x  denotes the interpolate solution 

values of degree 2 at the sub-integration interval [ ]/10,b b . 

By ( )2
b ξℜ , where ( )

[ ]
( )2 2

/10,
max

b b

b bξ
ξ ξ

∈
ℜ = ℜ , we denote the 

maximum Lagrange interpolation error of interpolating the 

exact solution ( )u x  on each corresponding sub-interval 

[ ]/10,b b . Then we can estimate ( )2
b ξℜ  using the following 

inequality 
[ ]

( ) [ ]
( ) ( )

( ) ( )
1

/10,

2
/10,

0

max

max
1 !

n
n

x b bb
i

x b b
i

u x

x x x
n

+

∈

∈
=

ℜ ≤ −
+ ∏ ɶ . 

Let ( )2
b

ixΕ  denote the relative error of interpolation, then 

we can estimate this error by using the following relative 
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error inequality ( ) ( ) ( ) ( )5
2 2

1
10

2

b b
i i i ix u x u x u x−Ε = − < × . 

The obtained interpolant solutions for 2n =     and for 

any  value of b  are faster converge to the exact ones than the 

methods described in [17, 18]. 

Example 1 

Consider the weakly singular Volterra integral equation of 

the second kind ( ) ( )
0

2

x
u tx

u x x dt
x t

π= + −
−∫ . The exact 

solution [19] is given by ( )u x x= , and 0 x b≤ ≤  where b  

is a real number. Tables 1, 2, 3, and 4, show the exact 

solution values ( )iu x , the interpolate solution values 

( )2
b

iu x , the absolute errors ( )2
b

iR x , and the relative errors 

( )2
b

ixΕ  at the corresponding set of nodes 

/ 10 : /10 :ix b b b= . In figures 1, 2, 3, and 4, plotted are the 

graphs of the exact solution ( )u x  and the graphs of the 

interpolant solutions ( )2
bu x  for 0.1,0.2,0.4,0.6b = . We find 

from the exact solution of (1) that ( )
0

lim 0
x

u x
→

= , while the 

presented interpolation method gives

( ) ( ) ( )0.1 0.2 0.4
2 2 2

0 0 0
lim 0.10235, lim 0.14475, lim 0.20471
x x x

u x u x u x
→ → →

= = = , 

and ( )0.6
2

0
lim 0.25071
x

u x
→

= . The maximum error on each 

subinterval [ ]/10,b b  are given by [ ]
( )0.1

0.01,0.1
max 0.086806nξ

ξℜ ≤ , 

[ ]
( )0.2

0.02,0.2
max 0.12276nξ

ξℜ ≤ , [ ]
( )0.4

0.04,0.4
max 0.17361nξ

ξℜ ≤ , 

and [ ]
( )0.6

0.06,0.6
max 0.21263nξ

ξℜ ≤ . 

Table 1. The exact solutions ( )iu x , the interpolate solutions ( )0.1
2 iu x , the absolute error ( )0.1

2 iR x , and the relative error ( )0.1
2 ixΕ  at 0.01:0.01:0.1ix = . 

ix  ( )iu x  ( )0.1
2 iu x  ( )0.1

2 iR x  ( )0.1
2 ixΕ  

0.01 0.1 0.13553 0.03553 5.0e-7 

0.02 0.14142 0.16681 0.02539 7.0711e-7 
0.03 0.17321 0.19477 0.02156 8.6603e-7 

0.04 0.2 0.2192 0.0192 1.0e-6 

0.05 0.22361 0.24114 0.01753 1.118e-6 
0.06 0.24495 0.26243 0.01748 1.2247e-6 

0.07 0.26458 0.28471 0.02013 1.3229e-6 

0.08 0.28284 0.30831 0.02547 1.4142e-6 
0.09 0.3 0.3307 0.0307 1.5e-6 

0.1 0.31623 0.34469 0.02846 1.5811e-6 

Table 2. The exact solutions ( )iu x , the interpolate solutions ( )0.2
2 iu x , the absolute error ( )0.2

2 iR x , and the relative error ( )0.2
2 ixΕ  at 0.02:0.02:0.2ix = . 

ix  ( )iu x  ( )0.2
2 iu x  ( )0.2

2 iR x  ( )0.2
2 ixΕ  

0.02 0.14142 0.1965 0.05377 7.0711e-7 
0.04 0.2 0.24463 0.04222 1.0e-6 

0.06 0.24495 0.28436 0.03818 1.2247e-6 

0.08 0.28284 0.31547 0.03474 1.4142e-6 
0.1 0.31623 0.34174 0.03163 1.5811e-6 

0.12 0.34641 0.36891 0.03125 1.7321e-6 

0.14 0.37417 0.4018 0.03607 1.8708e-6 
0.16 0.4 0.44119 0.04613 2.0e-6 

0.18 0.42426 0.47954 0.05596 2.1213e-6 

0.2 0.44721 0.49555 0.051 2.2361e-6 

Table 3. The exact solutions ( )iu x , the interpolate solutions ( )0.4
2 iu x , the absolute error ( )0.4

2 iR x , and the relative error ( )0.4
2 ixΕ  at 0.04:0.02:0.4ix = . 

ix  ( )iu x  ( )0.4
2 iu x  ( )0.4

2 iR x  ( )0.4
2 ixΕ  

0.04 0.2 0.2828 0.0828 1.0e-6 

0.08 0.28284 0.3543 0.07146 1.4142e-6 

0.12 0.34641 0.41403 0.06762 1.7321e-6 

0.16 0.4 0.46173 0.06173 2.0e-6 

0.2 0.44721 0.50238 0.05517 2.2361e-6 

0.24 0.4899 0.54348 0.05358 2.4495e-6 

0.28 0.52915 0.59132 0.06217 2.6458e-6 

0.32 0.56569 0.64663 0.08094 2.8284e-6 

0.36 0.6 0.69912 0.09912 3.0e-6 

0.4 0.63246 0.72058 0.08812 3.1623e-6 
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Table 4. The exact solutions ( )iu x , the interpolate solutions ( )0.6
2 iu x , the absolute error ( )0.6

2 iR x , and the relative error ( )0.6
2 ixΕ  at 0.06:0.06:0.6ix = . 

ix  ( )iu x  ( )0.6
2 iu x  ( )0.6

2 iR x  ( )0.6
2 ixΕ  

0.06 0.24495 0.35247 0.10752 1.2247e-6 
0.12 0.34641 0.44415 0.09774 1.7321e-6 

0.18 0.42426 0.51835 0.09409 2.1213e-6 

0.24 0.4899 0.57517 0.08527 2.4495e-6 
0.3 0.54772 0.62251 0.07479 2.7386e-6 

0.36 0.6 0.67167 0.07167 3.0e-6 

0.42 0.64807 0.7317 0.08363 3.2404e-6 
0.48 0.69282 0.8034 0.11058 3.4641e-6 

0.54 0.73485 0.87128 0.13643 3.6742e-6 

0.6 0.7746 0.89371 0.11911 3.873e-6 

 

 

Figure 1. The exact solution ( )u x  and the interpolate solution ( )0.1
2u x  

graphs. 

 

Figure 2. The exact solution ( )u x  and the interpolate solutions ( )0.2
2u x  

graphs. 

 

Figure 3. The exact solution ( )u x  and the interpolate solution ( )0.4
2u x  

graphs. 

 

Figure 4. The exact solution ( )u x  and the interpolate solution ( )0.6
2u x  

graphs. 

Example 2 

Consider the weakly singular Abel-Volterra integral 

equation of the second kind ( ) ( ) ( ) ( )
0

,

x

x k x t t dt f xφ φ+ =∫ , 

where ( ) ( )
0

sin

2 2

x
f x J

x

π π = +  
 

 and ( ) 1
,k x t

x t

−=
−

. The 

exact solution ( )u x  is given by ( ) ( )sin x
x

x
φ =  [20], for 

0 x b≤ ≤  where b  is a real number. The given function 

( )f x  is singular at 0x =  and the kernel ( ),k x t  is singular 

when x t→  and at 0.x =  Tables 5, 6, 7, and 8, show the 

exact solution values ( )ixφ , the interpolate solution values 

( )2
b

ixφ , the absolute errors ( )2
b

iR x , and the relative errors 

( )2
b

ixΕ  at the corresponding set of nodes 

/ 10 : /10 :ix b b b= . In figures 5, 6, 7, and 8 plotted are the 

graphs of the exact solution ( )xφ  and the graphs of the 

interpolant solutions ( )2
b xφ  for 0.1,0.2,0.4,0.6b = . From 

the exact solution of integral equation (1), we find that 

( )
0

lim 0
x

u x
→

=  while the interpolation method gives, 

( ) ( )0.1 0.2
2 2

0 0
lim 0.10235, lim 0.14475,
x x

u x u x
→ →

= =

( )0.4
2

0
lim 0.20182
x

u x
→

= , and ( )0.6
2

0
lim 0.2433.
x

u x
→

= The 
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maximum error on each sub-interval [ ]/10,b b  are given by 

[ ]
( )0.1

0.01,0.1
max 0.086806nξ

ξℜ ≤ , [ ]
( )0.2

0.02,0.2
max 0.12276nξ

ξℜ ≤ , 

[ ]
( )0.4

0.04,0.4
max 0.17338nξ

ξℜ ≤ , and 

[ ]
( )0.6

0.06,0.6
max 0.21199nξ

ξℜ ≤ . 

Table 5. The exact solutions ( )ixφ , the interpolate solutions ( )0.1
2 ixφ , the 

absolute error ( )0.1
2 iR x , and the relative error ( )0.1

2 ixΕ  at 

0.01:0.01:0.1ix = . 

ix  ( )ixφ  ( )0.1
2 ixφ  ( )0.1

2 iR x  ( )0.1
2 ixΕ  

0.01 0.099998 0.1275 0.027502 4.9999e-7 

0.02 0.14141 0.15134 0.00993 7.0706e-7 

0.03 0.17318 0.17239 0.00079 8.659e-7 

0.04 0.19995 0.19045 0.0095 9.9973e-7 

0.05 0.22351 0.20646 0.01705 1.1176e-6 

0.06 0.2448 0.22196 0.02284 1.224e-6 

0.07 0.26436 0.23831 0.02605 1.3218e-6 

0.08 0.28254 0.2557 0.02684 1.4127e-6 

0.09 0.2996 0.27195 0.02765 1.498e-6 

0.1 0.3157 0.28104 0.03466 1.5785e-6 

Table 6. The exact solutions ( )ixφ , the interpolate solutions ( )0.2
2 ixφ , the 

absolute error ( )0.2
2 iR x , and the relative error ( )0.2

2 ixΕ  at 

0.02:0.02:0.2ix =  

ix  ( )ixφ  ( )0.2
2 ixφ  ( )0.2

2 iR x  ( )0.2
2 ixΕ  

0.02 0.14141 0.17919 0.03778 7.0706e-7 

0.04 0.19995 0.21207 0.01212 9.9973e-7 

0.06 0.2448 0.24016 0.00464 1.224e-6 

0.08 0.28254 0.26317 0.01937 1.4127e-6 

0.1 0.3157 0.283 0.0327 1.5785e-6 

0.12 0.34558 0.30263 0.04295 1.7279e-6 

0.14 0.37294 0.32456 0.04838 1.8647e-6 

0.16 0.3983 0.34903 0.04927 1.9915e-6 

0.18 0.42198 0.37181 0.05017 2.1099e-6 

0.2 0.44424 0.3816 0.06264 2.2212e-6 

Table 7. The exact solutions ( )ixφ , the interpolate solutions ( )0.4
2 ixφ , the 

absolute error ( )0.4
2 iR x , and the relative error ( )0.4

2 ixΕ  at 

0.04:0.04:0.4ix = . 

ix  ( )ixφ  ( )0.4
2 ixφ  ( )0.4

2 iR x  ( )0.4
2 ixΕ  

0.04 0.19995 0.25059 0.05064 9.9973e-7 

0.08 0.28254 0.29588 0.01334 1.4127e-6 

0.12 0.34558 0.33258 0.013 1.7279e-6 
0.16 0.3983 0.3604 0.0379 1.9915e-6 

0.2 0.44424 0.38326 0.06098 2.2212e-6 

0.24 0.48521 0.40682 0.07839 2.426e-6 
0.28 0.52226 0.43548 0.08678 2.6113e-6 

0.32 0.55608 0.46939 0.08669 2.7804e-6 

0.36 0.58712 0.50054 0.08658 2.9356e-6 
0.4 0.61572 0.50826 0.10746 3.0786e-6 

Table 8. The exact solutions ( )ixφ , the interpolate solutions ( )0.6
2 ixφ , the 

absolute error ( )0.6
2 iR x , and the relative error ( )0.6

2 ixΕ  at 

0.06:0.06:0.6ix = . 

ix  ( )ixφ  ( )0.6
2 ixφ  ( )0.6

2 iR x  ( )0.6
2 ixΕ  

0.06 0.2448 0.30352 0.05872 1.224e-6 

0.12 0.34558 0.3584 0.01282 1.7279e-6 
0.18 0.42198 0.40069 0.02129 2.1099e-6 

0.24 0.48521 0.43039 0.05482 2.426e-6 

0.3 0.53954 0.45352 0.08602 2.6977e-6 
0.36 0.58712 0.47823 0.10889 2.9356e-6 

0.42 0.62919 0.51054 0.11865 3.1459e-6 

0.48 0.66652 0.55033 0.11619 3.3326e-6 
0.54 0.69965 0.58613 0.11352 3.4983e-6 

0.6 0.72895 0.5891 0.13985 3.6448e-6 

 

Figure 5. The exact solution ( )xφ  and the interpolate solution ( )0.1
2 xφ . 

 

Figure 6. The exact solution ( )xφ  and the interpolate solution ( )0.2
2 xφ  

graphs. 

 

Figure 7. The exact solution ( )xφ  and the interpolate solutions ( )0.4
2 xφ  

graphs. 
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Figure 8. The exact solutions ( )xφ  and the interpolate solution ( )0.6
2 xφ  

graphs. 

Example 3 

Consider the weakly singular Abel-Volterra integral 

equation of the second kind ( ) ( ) ( ) ( )
0

,

x

x k x t t dt f xϕ ϕ+ =∫ , 

where ( ) 1f x =  and ( ) 1
,k x t

x t

−=
−

. The exact solution 

( )u x  is given by ( ) ( )xx e erfc xπϕ π= +  [20], for 

0 x b≤ ≤  where b  is a real number. The given function 

( )f x  is singular at 0x =  and the kernel ( ),k x t  is singular 

when x t→  and at 0x = . Tables 9, 10, 11, and 12, show the 

exact solution values ( )ixϕ , the interpolate solution values 

( )2
b

ixϕ  and the absolute errors ( )2
b

iR x , and the relative 

errors ( )2
b

ixΕ  at the corresponding set of nodes 

/ 10 : /10 :ix b b b= . In figures 9, 10, 11, and 12, plotted are 

the graphs of the exact solution ( )xϕ  and the graphs of the 

interpolant solutions ( )2
b xϕ  for 0.1,0.2,0.4,0.6b = . From 

the presented interpolation method, it turns out that

( ) ( ) ( ) ( )0.1 0.2 0.4 0.6
2 2 2 2

0 0 0 0
lim lim lim lim 1
x x x x

x x x xϕ ϕ ϕ ϕ
→ → → →

= = = = exactly 

equal ( )0 1ϕ = . We find [ ]
( )0.1

0.01,0.1
max 0.009028nξ

ξℜ ≤ , 

[ ]
( )0.2

0.02,0.2
max 0.011233nξ

ξℜ ≤ , [ ]
( )0.4

0.04,0.4
max 0.012991nξ

ξℜ ≤ , 

and [ ]
( )0.6

0.06,0.6
max 0.013567nξ

ξℜ ≤ . 

Table 9. The exact solutions ( )ixϕ , the interpolate solutions ( )0.1
2 ixϕ , the absolute error ( )0.1

2 iR x , and the relative error ( )0.1
2 ixΕ  at 0.01:0.01:0.1ix = . 

ix  ( )ixϕ  ( )0.1
2 ixϕ  ( )0.1

2 iR x  ( )0.1
2 ixΕ  

0.01 0.82767 0.92446 0.09679 4.1384e-6 

0.02 0.76985 0.86795 0.0981 3.8493e-6 

0.03 0.72981 0.81694 0.08713 3.6491e-6 

0.04 0.69864 0.76944 0.0708 3.4932e-6 

0.05 0.67296 0.72878 0.05582 3.3648e-6 

0.06 0.65107 0.69908 0.04801 3.2553e-6 

0.07 0.63196 0.68219 0.05023 3.1598e-6 

0.08 0.61501 0.67554 0.06053 3.0751e-6 

0.09 0.59977 0.67004 0.07027 2.9989e-6 

0.1 0.58594 0.64818 0.06224 2.9297e-6 

Table 10. The exact solutions ( )ixϕ , the interpolate solutions ( )0.2
2 ixϕ , the absolute error ( )0.2

2 iR x , and the relative error ( )0.2
2 ixΕ  at 

0.02:0.02:0.2ix = . 

ix  ( )ixϕ  ( )0.2
2 ixϕ  ( )0.2

2 iR x  ( )0.2
2 ixΕ  

0.02 0.76985 0.89497 0.12512 3.8493e-6 

0.04 0.69864 0.81909 0.12045 3.4932e-6 

0.06 0.65107 0.75285 0.10178 3.2553e-6 

0.08 0.61501 0.69328 0.07827 3.0751e-6 

0.1 0.58594 0.64428 0.05834 2.9297e-6 

0.12 0.56161 0.61032 0.04871 2.808e-6 

0.14 0.54071 0.59276 0.05205 2.7036e-6 

0.16 0.52243 0.58766 0.06523 2.6121e-6 

0.18 0.50621 0.58363 0.07742 2.531e-6 

0.2 0.49165 0.5597 0.06805 2.4582e-6 
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Table 11. The exact solutions ( )ixϕ , the interpolate solutions ( )0.4
2 ixϕ , the absolute error ( )0.4

2 iR x , and the relative error ( )0.4
2 ixΕ  at 

0.04:0.04:0.4ix = . 

ix  ( )ixϕ  ( )0.4
2 ixϕ  ( )0.4

2 iR x  ( )0.4
2 ixΕ  

0.04 0.69864 0.85498 0.15634 3.4932e-6 

0.08 0.61501 0.75528 0.14027 3.0751e-6 

0.12 0.56161 0.6723 0.11069 2.808e-6 

0.16 0.52243 0.60132 0.07889 2.6121e-6 

0.2 0.49165 0.54623 0.05458 2.4582e-6 

0.24 0.46643 0.511 0.04457 2.3321e-6 

0.28 0.44517 0.4957 0.05053 2.2258e-6 

0.32 0.42686 0.49454 0.06768 2.1343e-6 

0.36 0.41084 0.49389 0.08305 2.0542e-6 

0.4 0.39665 0.4701 0.07345 1.9833e-6 

Table 12. The exact solutions ( )ixϕ , the interpolate solutions ( )0.6
2 ixϕ , the absolute error ( )0.6

2 iR x , and the relative error ( )0.6
2 ixΕ  at 

0.06:0.06:0.6ix = . 

ix  ( )ixϕ  ( )0.6
2 ixϕ  ( )0.6

2 iR x  ( )0.6
2 ixΕ  

0.06 0.65107 0.82561 0.17454 3.2553e-6 
0.12 0.56161 0.71021 0.1486 2.808e-6 

0.18 0.50621 0.61766 0.11145 2.531e-6 

0.24 0.46643 0.54155 0.07512 2.3321e-6 
0.3 0.43569 0.48514 0.04945 2.1785e-6 

0.36 0.41084 0.45148 0.04064 2.0542e-6 

0.42 0.39013 0.43937 0.04924 1.9507e-6 
0.48 0.37247 0.44181 0.06934 1.8624e-6 

0.54 0.35715 0.44409 0.08694 1.7858e-6 

0.6 0.34368 0.42164 0.07796 1.7184e-6 

 

 

Figure 9. The exact solution ( )xϕ  and the interpolate solution ( )0.1
2 xϕ  

graphs. 

 

Figure 10. The exact solution ( )xϕ  and the interpolate solution ( )0.2
2 xϕ  

graphs. 

 

Figure 11. The exact solution ( )xϕ  and the interpolate solutions ( )0.4
2 xϕ  

graphs. 

 

Figure 12. The exact solution ( )xϕ  and the interpolate solution ( )0.6
2 xϕ  

graphs. 
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4. Conclusion 

In this paper, we created an interpolation method for 

solving Volterra integral equations of the  second kind with a 

weakly singular kernel. For isolating the kernel singularity, 

we established two rules for exemplary choosing the  node 

distributions of the two variables of the kernel in such a 

manner that the quantity under the square root never becomes 

negative or zero. We implemented this idea by carrying out 

the step sizes depending on some quantity greater than or 

equal to zero, which consists of the upper integration variable 

and the interpolant degree. We applied the presented method 

under the consideration of these two rules to obtain a double 

interpolant kernel completely free from any kind 

of  singularities.  The substitution of the interpolant solution 

on both sides of the integral equation enabled us to access an 

algebraic linear system without applying the collocation 

points. The interpolant solution estimated the solution values 

at the singular points. The obtained interpolate solutions of 

the three solved examples are faster to converge to the exact 

ones using the lowest interpolant degree. This ensures the 

superiority of the presented method compared with others. 
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