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Abstract: The notion of intersection body is introduced by Lutwak in 1988, it is one of important research contents and
led to the studies of Busemann-Petty problem in the Brunn-Minkowski theory. Based on the properties of the intersection
bodies, Schuster introduced the notion of radial Blaschke-Minkowski homomorphisms and proved a lot of related inequalities.
In this paper, by applying the dual mixed volume theory and analytic inequalities, we first give a lower bound of the dual
quermassintegrals for the mixed radial Blaschke-Minkowski homomorphisms. As its an application, we get a reverse form of
the well-known Busemann intersection inequality. Further, a Brunn-Minkowski type inequality of the Lp radial Minkowski sum
for the dual quermassintegrals of mixed radial Blaschke-Minkowski homomorphisms is established, and then the intersection
body version of this Brunn-Minkowski type inequality is yielded. From this, we not only extend Schuster’s related result but also
obtain the Brunn-Minkowski type inequalities of Lp harmonic radial sum and Lp radial Blaschke sum, respectively.

Keywords: Dual Quermassintegral, Intersection Body, Radial Blaschke-Minkowski Homomorphism,
Busemann Intersection Inequality, Lp Radial Minkowski Sum

1. Introduction
The setting for this paper is Euclidean n-space Rn. Let

Sn−1 denote the unit sphere in Rn and V (K) denote the n-
dimensional volume of body K. For the centered unit n-ball
B, write V (B) = ωn.

If K is a compact star-shaped (about the origin) in En, its
radial function, ρK = ρ(K, ·), is defined by [1]

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}

for all u ∈ Sn−1. If ρK is positive and continuous, K will be
called a star body (about the origin). Let Sno denote the set of
all star bodies (about the origin) in Rn.

The notion of intersection body was explicitly defined by
Lutwak [2]. For K ∈ Sno and n ≥ 2, the intersection body,
IK, of K as a star body whose radial function in direction
u ∈ Sn−1 is equal to the (n − 1)-dimensional volume of the
section of K by the hyperplane orthogonal to u, i.e.,

ρ(IK, u) = v(K ∩ u⊥),

where v is the n− 1-dimensional volume and u⊥ is the n− 1-
dimensional subspace of Rn orthogonal to u ∈ Sn−1.

Intersection body is one of the central notions and led to the
studies of Busemann-Petty problem in the Brunn-Minkowski
theory [1, 3, 4, 2, 5, 6, 7, 8, 9]. Based on the properties
of intersection bodies, Schuster [10] introduced the radial
Blaschke-Minkowski homomorphisms as follows:

Definition 1.A A map Ψ : Sno → Sno is called a
radial Blaschke-Minkowski homomorphism if it satisfies the
following conditions:

(1) Ψ is continuous.
(2) ΨK is radial Blaschke-Minkowski additive. i.e.

Ψ(K+̂L) = ΨK+̃ΨL for all K,L ∈ Sno . Here K+̂L dentes
the radial Blaschke sum of K and L, and ΨK+̃ΨL denotes
the radial Minkowski sum of ΨK and ΨL.

(3) Ψ intertwines rotations, i.e. Ψ(ϑK) = ϑΨK for all
K ∈ Sno and all ϑ ∈ SO(n).

According to above definition, Schuster [10] proved the
following important result:
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Theorem 1.A There is a continuous operator

Ψ : Sno × · · · × Sno︸ ︷︷ ︸
n−1

→ Sno

symmetric in its arguments such that, for L1, · · · , Lm ∈ Sno and λ1, · · · , λm ≥ 0,

Ψ(λ1L1+̃ · · · +̃λmLm) =
∑̃

i1,··· ,in−1

λi1 · · ·λin−1
Ψ(Li1 , · · · , Lin−1

),

where the sum is with respect to radial Minkowski addition.

Theorem 1.A generalizes the notion of radial Blaschke
Minkowski homomorphism. We call

Ψ : Sno × · · · × Sno︸ ︷︷ ︸
n−1

→ Sno

the mixed radial Blaschke-Minkowski homomorphisms
denoted by Ψ(K1,K2, · · · ,Kn−1) for K1,K2, · · · ,Kn−1 ∈
Sno .

For K,L ∈ Sno , let Ψi(K,L) = Ψ(K, · · · ,K︸ ︷︷ ︸
n−i−1

, L, · · · , L︸ ︷︷ ︸
i

)

(i = 0, 1, · · · , n − 1) denote the mixed radial Blaschke-
Minkowski homomorphisms of K and L. If L = B, we write
ΨiK = Ψi(K,B) and call ΨiK the mixed radial Blaschke-
Minkowski homomorphisms of K. Clearly, Ψ0K = ΨK.

Whereafter, Schuster [11] considered the Busemann-Petty
problem for the radial Blaschke-Minkowski homomorphisms.
In 2011, Wang, Liu and He [12] extended Schuster’s radial
Blaschke-Minkowski homomorphisms to Lp analogies. In
recent years, a lot of important conclusions for the radial
Blaschke-Minkowski homomorphisms and their Lp analogies
were obtained, see e.g. [13, 14, 15, 16, 17, 12, 18, 19, 20, 21,
22, 23, 24, 25].

One purpose of this paper is to establish a lower bound
for the dual quermassintegrals of the mixed radial Blaschke-
Minkowski homomorphisms:

Theorem 1.1 If K ∈ Sno , real i < n − 1 and j =
0, 1, · · · , n− 1, then

W̃i(ΨjK) ≥
rn−iΨ

ωn−i−1
n

W̃j+1(K)n−i,

with equality if and only if ΨjK is a ball. Here rΨ denotes the
radius of ΨB, W̃i(M) denotes the dual quermassintegrals of
M ∈ Sno .

Let i = j = 0 in Theorem 1.1, and notice that Ψ0K = ΨK
and W̃0(M) = V (M), we obtain that

Corollary 1.1 If K ∈ Sno , then

V (ΨK) ≥ rnΨ
ωn−1
n

W̃1(K)n,

with equality if and only if ΨK is a ball. Here rΨ denotes the
radius of ΨB.

Since the intersection operator I is an example of a radial
Blaschke-Minkowski homomorphism, thus, together with the
radius of IB is ωn−1, Corollary 1.1 provides the following a
new inequality for the volume of intersection body.

Corollary 1.2 If K ∈ Sno , then

V (IK) ≥
ωn
n−1

ωn−1
n

W̃1(K)n, (1)

with equality if and only if IK is a ball.
Remark 1.1 The fundamental volume inequality for

intersection bodies is the well-known Busemann intersection
inequality [26, 1]: If K is a convex body (i.e. compact, convex
subsets with non-empty interiors) containing the origin in its
interiors in Rn, then

V (IK) ≤
ωn
n−1

ωn−2
n

V (K)n−1, (2)

with equality if and only if K is a centered ellipsoid. Compare
to inequality (1) and inequality (2), inequality (1) may be
regards as a reverse form of Busemann intersection inequality.

In [10], Schuster proved a lot of inequalities for mixed
radial Blaschke-Minkowski homomorphisms, especially,
the following Brunn-Minkowski type inequality of radial
sum of star bodies for mixed radial Blaschke-Minkowski
homomorphisms was given.

Theorem 1.B If K,L ∈ Sno , i = 0, 1, · · · , n− 2 and j = 0, 1, · · · , n− 2, then

W̃i(Ψj(K+̃L))
1

(n−i)(n−j−1) ≤ W̃i(ΨjK)
1

(n−i)(n−j−1) + W̃i(ΨjL)
1

(n−i)(n−j−1) , (3)

with equality if and only if K and L are dilates. Here, K+̃L denotes the radial sum of K and L.
Our next result generalizes the above Brunn-Minkowski type inequality to Lp radial Minkowski sum of star bodies.
Theorem 1.2 Let K,L ∈ Sno , real p 6= 0, i = 0, 1, · · · , n− 2 and j is an integer. If p < 0 and 0 ≤ j < n− 1, then

W̃i(Ψj(K+̃pL))
p

(n−i)(n−j−1) ≥ W̃i(ΨjK)
p

(n−i)(n−j−1) + W̃i(ΨjL)
p

(n−i)(n−j−1) ; (4)
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if 0 < p < n− 1 and 0 ≤ j < n− p− 1, then

W̃i(Ψj(K+̃pL))
p

(n−i)(n−j−1) ≤ W̃i(ΨjK)
p

(n−i)(n−j−1) + W̃i(ΨjL)
p

(n−i)(n−j−1) . (5)

In each inequality, equality holds if and only if K and L are dilates. Here, K+̃pL denotes the Lp-radial sum of K and L.
Remark 1.2 If p = 1 in Theorem 1.2, then inequality (4) just is inequality (3). Let i = j = 0 in Theorem 1.2, and notice

intersection operator I is a special case of radial Blaschke-Minkowski homomorphisms, we have
Corollary 1.3 Let K,L ∈ Sno , real p 6= 0. If p < 0, then

V (I(K+̃pL))
p

n(n−1) ≥ V (IK)
p

n(n−1) + V (IL)
p

n(n−1) ;

if 0 < p < n− 1, then
V (I(K+̃pL))

p
n(n−1) ≤ V (IK)

p
n(n−1) + V (IL)

p
n(n−1) .

In each inequality, equality holds if and only if K and L are dilates.
Remark 1.3 Let p = −q (q ≥ 1) or p = n− q (1 < q < n) in Theorem 1.2, respectively, then inequality (4) orderly gives the

Brunn-Minkowski type inequalities for the Lq harmonic radial sum and the Lq radial Blaschke sum as follows:
Corollary 1.4 If K,L ∈ Sno , real q ≥ 1, i = 0, 1, · · · , n− 2 and j = 0, 1, · · · , n− 2, then

W̃i(Ψj(K+̃−qL))−
q

(n−i)(n−j−1) ≥ W̃i(ΨjK)−
q

(n−i)(n−j−1) + W̃i(ΨjL)−
q

(n−i)(n−j−1) ,

with inequality if and only if K and L are dilates. Here, K+̃−qL denotes the Lq harmonic radial sum of K and L.
Corollary 1.5 If K,L ∈ Sno , real 1 < q < n, i = 0, 1, · · · , n− 2 and integer j satisfies 0 ≤ j < q − 1, then

W̃i(Ψj(K+̂qL))
n−q

(n−i)(n−j−1) ≤ W̃i(ΨjK)
n−q

(n−i)(n−j−1) + W̃i(ΨjL)
n−q

(n−i)(n−j−1) ,

with inequality if and only if K and L are dilates. Here, K+̂qL denotes the Lq-radial Blaschke sum of K and L.
Corollary 1.4 and Corollary 1.5 were established by Wei, Wang and Lu [19].

2. Notations and Background Materials

2.1. Lp Radial Minkowski Combinations

The Lp radial Minkowski combination of star bodies was
introduced as follows [27, 7, 28]: For K,L ∈ Sno , real
p 6= 0 and λ, µ ≥ 0 (nor both 0), the Lp radial Minkowski
combination, λ ·K+̃pµ · L, of K and L is defined by

ρ(λ ·K+̃pµ · L, ·)p = λρ(K, ·)p + µρ(L, ·)p. (6)

Here ”+̃p” denotes the Lp radial Minkowski sum, λ · K
denotes the Lp radial Minkowski scalar multiplication and
λ ·K = λ1/pK. The case p = 1 yields the radial Minkowski
combination λ ·K+̃µ · L.

Let p = −q (q ≥ 1) in (6), then λ ·K+̃−qµ · L is called the
Lq harmonic radial combination of star bodies K and L [1, 7].

In 2015, Wang and Wang [29] defined the Lp radial
Blaschke combinations of star bodies as follows: For K,L ∈
Sno , n > p > 0 and λ, µ ≥ 0 (not both 0), the Lp radial
Blaschke combination, λ ◦ K+̂pµ ◦ L ∈ Sno , of K and L is
defined by

ρ(λ ◦K+̂pµ ◦ L, ·)n−p = λρ(K, ·)n−p + µρ(L, ·)n−p. (7)

Here ”+̂p” denotes the Lp radial Blaschke sum, λ ◦ K
denotes the Lp radial Blaschke scalar multiplication and λ ◦
K = λ1/(n−p)K. Clearly, (6) and (7) show that λ ◦K+̂pµ ◦
L = λ ·K+̃n−pµ · L.

2.2. Dual Mixed Volumes

In 1975, Lutwak [30] introduced the dual mixed volumes
as follows: For K1, · · · ,Kn ∈ Sno , the dual mixed volume
Ṽ (K1, · · · ,Kn) is defined by

Ṽ (K1,K2, · · · ,Kn) =
1

n

∫
Sn−1

ρK1(u)ρK2(u) · · · ρKn(u)du.

For K,L ∈ Sno and i = 0, 1, 2, · · · , n, we write Ṽi(K,L)

to denote the dual mixed volume Ṽi(K, · · · ,K︸ ︷︷ ︸
n−i

, L, · · · , L︸ ︷︷ ︸
i

).

Similarly, we use W̃i(K,L) = Ṽi(K, · · · ,K︸ ︷︷ ︸
n−i−1

, B, · · · , B︸ ︷︷ ︸
i

, L)

to denote the dual mixed quermassintegrals of K and L. If let
i be real, then an extension of the dual mixed volume Ṽi(K,L)
is that for K,L ∈ Sno and i ∈ R:

Ṽi(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−iρ(L, u)idu. (8)

In the same way, for K,L ∈ Sno and i ∈ R, we define the
dual mixed quermassintegrals of K and L by

W̃i(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−i−1ρ(L, u)du. (9)

Let L = B in (8) (or L = K in (9)), then the dual
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quermassintegrals, W̃i(K), of K ∈ Sno is given by

W̃i(K) = Ṽi(K,B) = W̃i(K,K)

=
1

n

∫
Sn−1

ρn−iK (u)du.
(10)

Further let i = 0 in (10), then we have the following polar
coordinate formula for the volume of a body K:

V (K) = W̃0(K) =
1

n

∫
Sn−1

ρnK(u)du.

For the above dual mixed quermassintegrals, corresponding
the Minkowski inequality is stated that [10]: If K,L ∈ Sno and
real i satisfies 0 ≤ i < n− 1, then

W̃i(K,L) ≤ W̃i(K)
n−i−1
n−i W̃i(L)

1
n−i , (11)

with equality if and only if K and L are dilates.

3. Proofs of the Main Results

In this section we will prove Theorems 1.1 and 1.2. To see
this, the following lemmas is required.

Lemma 3.1 [30] If K,L ∈ Sn0 , and reals i, j, k satisfy
i < j < k, then

Ṽj(K,L)k−i ≤ Ṽi(K,L)k−j Ṽk(K,L)j−i, (12)

with equality if and only if K and L are dilates.

Lemma 3.2 [10] If L ∈ Sno , i = 0, 1, · · · , n− 2, then

W̃n−1(ΨiL) = rΨW̃i+1(L). (13)

Proof of Theorem 1.1 In (12), let L = B, j = n − 1 and
k = n, and notice that Ṽn(K,B) = ωn by (8), we have for
i < n− 1,

W̃n−1(K)n−i ≤ ωn−i−1
n W̃i(K), (14)

with equality if and only if K is a ball centrad at the origin.
Taking ΨjK for K in (14), we get for j = 0, 1, · · · , n− 1,

W̃n−1(ΨjK)n−i ≤ ωn−i−1
n W̃i(ΨjK).

This and (13) yield

rn−iΨ W̃j+1(K)n−i ≤ ωn−i−1
n W̃i(ΨjK),

with equality if and only if ψjK is a ball centrad at the origin.
Thus, we have

W̃i(ΨjK) ≥
rn−iΨ W̃j+1(K)n−i

ωn−i−1
n

,

with equality if and only if ψjK is a ball centrad at the origin.
This gives Theorem 1.1. �

Now we give the proof of Theorem 1.2. Here, we prove a
lemma as follows:

Lemma 3.3 Let K,L ∈ Sno , real p 6= 0, and j is an integer.
If p < 0 and 0 ≤ j < n− 1, then

W̃j(K+̃pL,Q)
p

n−j−1 ≥ W̃i(K,Q)
p

n−j−1 + W̃i(L,Q)
p

n−j−1 ; (15)

if 0 < p < n− 1 and 0 ≤ j < n− p− 1, then

W̃j(K+̃pL,Q)
p

n−j−1 ≤ W̃i(K,Q)
p

n−j−1 + W̃i(L,Q)
p

n−j−1 . (16)

In each inequality, equality holds if and only if K and L are dilates.
Proof. From (6), (9) and the Minkowski integral inequality, if p < 0 and 0 ≤ j < n − 1, then n−j−1

p < 0. Thus, for any
Q ∈ Sno ,

W̃j(K+̃pL,Q)
p

n−j−1 =

[
1

n

∫
Sn−1

ρK+̃pL
(u)n−j−1ρQ(u)du

] p
n−j−1

=

[
1

n

∫
Sn−1

(
ρK+̃pL

(u)p
)n−j−1

p

ρQ(u)du

] p
n−j−1

=

[
1

n

∫
Sn−1

(
ρK(u)p + ρL(u)

p

)n−j−1
p

ρQ(u)du

] p
n−j−1

≥
[
1

n

∫
Sn−1

ρK(u)n−j−1ρQ(u)du

] p
n−j−1

+

[
1

n

∫
Sn−1

ρL(u)
n−j−1ρQ(u)du

] p
n−j−1

= W̃j(K,Q)
p

n−j−1 + W̃j(L,Q)
p

n−j−1 .

This yields inequality (15).
According to the equality condition of Minkowski integral inequality, we easily see equality holds in (15) if and only if K and

L are dilates.
Similarly, if 0 < p < n− 1 and 0 ≤ j < n− p− 1, then n−j−1

p > 1. Hence, by the Minkowski integral inequality, we know
that inequality (15) is reverse, i.e., inequality (16) and its equality condition are obtained. �

Lemma 3.4 [10] If K,L ∈ Sno and i, j = 0, 1, · · · , n− 2, then

W̃i(K,ΨjL) = W̃j(L,ΨiK). (17)
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Proof of Theorem 1.2 For i = 0, 1, · · · , n− 2, if p < 0 and 0 ≤ j < n− 1, then by (15) and (17) we have for any M ∈ Sno ,

W̃i(M,Ψj(K+̃pL))
p

n−j−1 = W̃j(K+̃pL,ΨiM)
p

n−j−1

≥ W̃j(K,ΨiM)
p

n−j−1 + W̃j(L,ΨiM)
p

n−j−1

= W̃i(M,ΨjK)
p

n−j−1 + W̃i(M,ΨjL)
p

n−j−1 .

This together with Minkowski inequality (11), and notice that p
n−j−1 < 0, we get

W̃i(M,Ψj(K+̃pL))
p

n−j−1 ≥ W̃i(M,ΨjK)
p

n−j−1 + W̃i(M,ΨjL)
p

n−j−1

≥ W̃i(M)
p(n−i−1)

(n−i)(n−j−1)

[
W̃i(ΨjK)

p
(n−i)(n−j−1) + W̃i(ΨjL)

p
(n−i)(n−j−1)

]
.

Let M = Ψj(K+̃pL) in above inequality, we obtain
inequality (4).

By the equality conditions of inequalities (11) and (15), we
see that equality holds in (4) if and only if K and L are dilates.

In the same method, if 0 < p < n−1 and 0 ≤ j < n−p−1,
then inequality (5) and its equality condition can be obtained.
�
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