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Abstract: One-dimensional parabolic-parabolic Keller-Segel (PP-KS) model of chemotaxis is considered. By using the
generalized tanh function method, (G’ /G)-expansion method and variable-separating method, plenty of new explicit exact
solutions, including travelling wave solutions and non-travelling wave solutions, are obtained for the PP-KS model. Compared to
the existing results, more new exact solutions are derived and the obtained solutions all have explicit expressions.
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1. Introduction

Investigating exact solutions of nonlinear evolution
equations plays an important role in nonlinear science. For
example, the wave phenomena observed in fluid dynamics,
plasma and elastic media are often modelled by bell-shaped
sech solutions and kink-shaped tanh solutions. The effort to
find these solutions is significant for the understanding of
many phenomena in physics, chemistry and biology, because
they may give more quantitative information. In the past
several decades, many effective methods for obtaining exact
solutions of nonlinear partial differential equations (NLPDEs)
have been presented such as Hirota’s bilinear method [1],
inverse scattering method [2], Backlund transformation
method [3], Painleve expansion method [4], Jacobi elliptic
function expansion method, the new generalized algebraic
method and so on [5-10].

The prototypical chemotaxis model was proposed by Keller
and Segel in the 1970s to describe the aggregation of cellular
slime molds Dictyostelium discoideum in response to the
chemical cyclic adenosine monophosphate [11-12]. In its
general form, Keller-Segel model reads

u, =0 Hd0Ou - yul@Av)),
v, =alv + f(u,v),

(1)

where u and v denote the cell density and chemical
concentration, respectively. d >0 and a =0 are cell and
chemical diffusion coefficients, respectively. ¥ >0 is called
the chemotactic coefficient measuring the strength of the
chemical signal. Here ¢(v) is referred to as the

chemosensitivity function describing the signal detection
mechanism and f(u,v) is a function characterizing the

chemical growth and When

@v)=Inv, f(u,v) =—ku,

Keller and Segel [13] performed theoretical analysis of the
one—dimensional form of (1) to interpret the propagating
travelling bands of bacterial chemotaxis experimentally
observed in [14, 15]. Since then, the study of travelling wave
solutions to (1) has received extensive attentions [16-17] and
the references quoted therein. The readers are referred to [18]
and [19, 20] for more detail about biological motivation and
mathematical introduction of Eq. (1).

In this paper, exact solutions of the one-dimensional
parabolic-parabolic Keller- Segel (PP-KS) model of
chemotaxis are considered. The model is made of two
parabolic equations as follows

u, —u, +(uv,), =0,
v,—av,, —Bu=0.

degradation.

@
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It is a special <case of Eq. (1) when
d=x=L@v)=v,f(u,v)=Bu, here B(>0) isa constant.
By taking A=1 and travelling wave
transformation ¥ = X —¢f, (2) can be rewritten as

introducing
u, +cu—uv,+A=0

y y ’
{ 3)

+ev, tu=
av,, +cv, +u =0,

where u =u(y),v=v(y), A is an integral constant. In [21],

the authors have shown that (3) is Painleve integrable when
a =2 and soliton solutions for the particular integrable case
are investigated. In this paper, more explicit exact solutions of
(2) will be given. The rest of the paper is organized as follows.
In section 2, exact solutions of (2) are derived by the
generalized tanh function method. In section 3, exact solutions
of (2) are studied by the ( G' /G)-expansion method. In section
4, two variable-separating methods are used to get rational
solutions of (2). Conclusions will be finally presented.

2. Generalized Tanh Function Method

Form the second equation of (3), one can easily get
u=-av, —cv,. (4)
Substituting (4) into the first equation of (3), one can obtain
_ _ _ _2 2 —
av,,, —cv,, —cav,, —cv, +avy, +cv, +A=0. (5)

Let f =v,, (5)can be simplified to

~af,, ~cf,~caf, = f+aff, +cf>+A=0. 6)

From above analysis, u and v can be obtained by
solving (6)

v= j.fdy,

u-= _O'Vyy _CVy.

(7

According to the main steps of the generalized tanh
function method in [22], (6) is assumed to has solutions of the
form

M
[En+ Y nd, ®)
i=1

where n; (i=0,1,..,M) are constants to be determined,

@=@y) is asolution of the Riccati equation
@, = A+Bp+Ng'. )

Here, 4,B and N are constants, solutions of (9) have been
found in [22-23]. Balancing f, with ff, in(6) givesM =1.
Substituting f = n, +n,¢ into (6) along with (9), one can get

an N(n, —=2N)¢ +(-3am BN —cn, N -
cam N +amnyN +an’B+cn’ )¢
+(an® A+2cmn, —an B* —2an, NA

(10)

—em B —can B-cn +ann,B)@
+(—aBAn, —caAn; + amnyA +

A=cemA=c*ny +eny?) = 0.

Setting the coefficients of (d (i=0,1,2,3) to zero, one can
get

n =2N, n, =B+c—£,
a

1, 5 (11)
a=2, A :4CNA+ZC -cB”.

Taking advantage of the existing solutions of (9), one can
find many kinds of travelling wave solutions for (3).

3

When Azl,Bzo,Nz—l, then /1=—c+lc,
2 2 4

solutions of (6) and (3) are
1
h= Ec —coth(y) £ csch(y),

1 =2¢sinh(y) £ ¢* F4+c? cosh(y)

2 cosh(y)£1

>

v = %cy —In(sinh( y)) = In(tanh(y)),

and
1 tanh
f=te- » ’
2 1xsech(y)
L=l —c? cosh(y) + 2¢sinh(y) + 4 F ¢
2 - P}

2 cosh(y)£1

v, = %cy +In(sech(y)) —In(sech(y) £ 1).

When A=%,B=O,N=%, then /]=c+%03, solutions

of (6) and (3) are

fy = e tan(y) sec(y),

y _ 1 2ccos(y) =’ sin(y) +c” £4
) sin(y) ¥ 1 ’

vy = %cy ~In(cos(y)) £ In(tan(y) +sec(»),

and
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1
fi =5 e ese(y) = cot(y) 7 =%c—200t(y),

P c? cos(y) +2csin(y) +c* +4
to2 1+cos(y) ’ Uy

_ 4c¢cos(y)sin(y) + ? cosz(y) -8-¢?
—2(—1 +cos? (y))

vy =+ ey~ In(ese(y) + cot()) ~ In(sin( ).
2 1 .
Vo = 5 cy —21In(sin(y)).
When A=—l,B=0,N=—l, then A =c+lc3,
2 2 4

1 R — o AT — _ 13
solutions of (6) and (3) are When A=1,B=-2,N =2, then A=4c +Zc ,

solutions of (6) and (3) are

1

fs = c—cse(y) —cot(y),
2

fo = _2+lc+ 4tan(y)

_ 1 c*cos(y)+2csin(y)—c* —4 2 l+tan(y)’
Us =75 -1+ ’ 2 . 2 2
cos(y) _ 2¢” cos(y)sin(y) —8ccos“(y) +16+c” +4c
! o= 2(1+2 i ’
b = ey +In(ese ) + cot() = Infsin()). (1+2cos(y)sin(y))

Vio =%cy+ln(l+tan2(y))—2ln(l+tan(y)).

>

When A=1,B=0,N=-1, then A:_4C+ic3

solutions of (6) and (3) are When A=1,B=2,N=2, then A=4c +%c3 , solutions
f(6) and (3
fo =L -2 tanh(y), of (6) and (3) are
2 1 4 tan(y)
_ 4ccosh(y)sinh(y) —c? cosh?(y) +8 Ju=2+—ct———,
ug = 5 , 2 1-tan(y)
2cosh(y) s ) 5 s
1 - 2¢” cos(y)sin(y) —8ccos”(y)—16—c” +4c
Ve :Ecy —2In(cosh(y)), 11 _2(_1 +2c0s(y) sin(y)) )
and Vi1 =%cy+1n(1+tan2(y))—21n(—1+tan(y)).

f; = ye=2coth(), 1
When A=-1,B=2,N =-2, then A =4C+—C3,
. = Aecosh(y)sinh(y) - ¢? cosh(y) -8 +¢? 4

) solutions of (6) and (3) are

7 2sinh? »)
) . 1 4cot(y)
=L oy~ 2In(sinh(»)). =2t7e :
vy = ¢y = 2In(sin ) fro 2 l+cot(y)
When A=1B=0,N=1, then A=dc+-c’, solutions = 2¢" cos(y)sin(y) ~8ccos () =16 —¢” +4c
4 2 = —2(—1+2005(y)sin(y)) '
of (6) and (3) are

1 Vis :%cy+ln(l+cot2(y))—21n(1+cot(y))—7T.
1 =Ec+2tan(y),

L = Accos(y)sin(y) +¢? cos® () +8 When A=-LB=-2N=-2, then A=dc+ic’,
4

’ -2 cos? ») ’
Y solutions of (6) and (3) are

vg = %cy —21In(cos(y)).

When A=-1,B=0,N=-1, then ;|:4c+%c3

>

solutions of (6) and (3) are
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1 4cot(y) _1 8cot(y)
=2+—c———, fig =oem———,
Ji 2 1-cot(y) 727 1-cot(y)
= =2¢2 cos(y)sin(y) +8ccos’(y) +16 +¢* —4c¢ Uy =_—12(16csin(y)cos(y)(20052 (-1
" 2(=1+2cos(y)sin(y)) ’ 2(20052()’)‘1

462 cos? ()sin? () +32+¢2),
Vis =%cy+ln(1+cot2(y))—2ln(—1+cot(y))—ﬂ, ¢” cos”(y)sin”(y) )

Vs =%cy+21n(1+c0t2(y))—21n(cot(y)+1)

When 4=0,B=0,N#0, then A =%c3, solutions of —2In(cot(y) -1).

6) and (3
(6) and (3) are 3. (G'/G)-Expansion Method
2N

1
Sia= 5T Ny+N,’ In this section, (6) is solved by the (G'G)-expansion
method and solutions of (3) can be obtained by (7). According

> , to the (G'/G)-expansion method [24-25], the function [ is
2(Wy+N) expressed as a polynomial in (G”/G)

Via :%cy—Zln(Ny+Nl),

Y= 8N% + N2y +2¢* NN,y + ¢* N2 =4cN?y —4eN\N
14 —

M G .
f:m0+Zml-(E)l, (12)
where N, is a constant. i=l

When A=1,B=0,N=-4, then A=-16c +lc3, where m; (i=0,1,..,M) are constants to be determined,
G=G(y) satisfies a second-order linear ordinary

solutions of (6) and (3) are . ; .
differential equation

lc— 8 tanh(y) G"+rG' +uG =0. (13)
2 l+tanh’(y)’
1 Y Here, 7 and M are constants, solutions of (13) have been
- 2
tys = 7 (F32+64tanh”(y) - found in [24-25]. Balancing f,y with ff, in (6) gives
2 W v
—2(1+tanh (y))

Sis =

G . .
M =1. Substituting f =m, +m(—) into (6) along with (13),
32tanh*(y) +c? +2¢% tanh? () + ¢ tanh? (1) " g S =myrms (6) along with (13)

—16¢ tanh(y) —16¢ tanh(»)), one can get

c mc

1 2
vis =—cy—2In(1+tanh”(y) |+ '
v ( ) ~am,(m, +2>(—f; Y —am (r=—=ctmy+mr==-1%)

2In(tanh(y) = 1) +2In(tanh(y) +1). ,
(i)2 +(—amr* -2am U+ cmr+cam r=c’m -
| G 1 1 1 1 1 (14)
When A=1,B=0,N =4, then A :16c+zc3, G
2 2 2
a -a —)+(A- + +
solutions of (6) and (3) are mymor = am;”f2)( G VA= Ty +emy”+emy

fie :lc+ 8tan(y) , —amyrp+cam it —ammyld) = 0.
2 1-tan’(y)
- . . G ..
Uy 2—12(16csin(y)cos(y)(2 cos?(y) Setting the coefficients of (E) (#=0,1,2,3) to zero, one
2 -
2(2COS ) 1) can get
-1)—4c? cos? (y)sin® (y) +32 +c?), .
1 5 m==2, =2, my=r——,
Vig =Ecy+2ln(1+tan (y))—Zln(tan(y)+1) 1 2 15)
— 3_.2
—21n(tan(y)-1). /1—40/1"'20 —cr.
1
When A=-1,B=0,N=-4, then A= 16C+ZC3, Taking advantage of exact solutions of (13), two kinds of

exact travelling wave solutions for (3) can be found.

solutions of (6) and (3) are 5
When r~ =44 >0, solutions for (6) and (3) are as follows
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[q sinh(%\/rz —4uy)+C, cosh(%q/rz - 4,Uy)j

fiS :%C_ 1”2—4/.1[

1

e} cosh(%\/rz —4uy)+C, sinh(%q/rz - 4,Uy)j

Uy

2((:1 cosh(%«/rz —4uy)+C, sinh(%/r2 —4,uy)j

- (=2r°Cy" +2°C7 +8UC,* =8UC +c7C)}

(16)
—2¢C,Conr? =4 - coshz(%w/rz —4uy)-2c2C,C, cosh(%q/rz —4,Uy)sinh(%«/r2 —4uy)
-*Cy’ coshz(%«/rz —4py) +2cCP\r? —4p cosh(%«/rz —4,Uy)sinh(%«/r2 ~4uy)
+4cC Con =4 coshz(%w/rz —4uy)+2¢ClAN\r? —4u cosh(%«/rz —4,Uy)sinh(%«/r2 -4uy)),
Vig =%cy —2ln(C1 cosh(%q/rz -4uy)+C, sinh(%\/rz —4,Uy)j,
When 72 —4u<0, solutions for (6) and (3) are as follows
| (—03 sin(%«/4y—r2y) +C, cos(%\/4;1—r2 y)j
fio =5 e—4u-r’ ,
2 1 B .1 2
(C3 cos(E«/4,u—r »+C, SIH(E\/4,U‘F y)j
1 (17)

U9 =

2
1 1 1
2[(032 +C2 )cosz(?/w—rzy) +2C4C, cos(?/4y—r2y) sm(?/4y—r2y) + cﬁj

(2r2C2 =8UC,? +2r2Cy? —8UC,” = c*C2 = 2¢CyCynJ4u—1* = *Cy? cosz(%\/4/1—r2 »)

-2¢°C4C, cos(%\/4,u—r2 ) sin(%\/4,u—r2 y)+cic? cosz(%\/4,u—r2 »)

“2c¢C\4u-r? cos(%\/4,u—rzy)sin(%\/4,u—r2y) +4cCyCy\Jdu—r? cosz(%\/4,u—r2 D)
+20C, 2 \JAu-r? Cos(%\/4,u— r y)sin(%\/4,u— ),

Vio =%cy—2ln(c3 cos(%\/4,u—r2y)+C4 sin(%\/4,u—r2y)j,

where C; (i =1,2,3,4) are constant.
Remark | When 2 —4u =4, C =LGC, =0,

fis = %c —2tanh(y),

1

:m(s —¢? cosh? (y) +4c cosh(y)sinh(y)),

g
1
Vig = Ecy —2ln(cosh(y)),

this is exactly the same with the solution (fg,us,Vs)

obtained in section 2. Similarly, when

rP—4u=4,C,=0,C, =1, the solution (fig.%5.Vi3) is the

same with (fy.u7.v;). when »*—4u=-4, C,=1LC, =0,
the solution (fi9,t95Vig) is the same with (fg,ug,vs),

solution

When

when

(fi9su]9:v19) is the

rr—4p=-4,C,=0,C, =1, the
(.f95u95v9)'

¥ —4p, C, and C, take other values, the solutions

same with

obtained in this section are completely new.
Remark 2 The solutions (f;,u;,v;) (i=12,..

15 Vi .,19) are all
travelling wave solutions for the particular integrable case of
(3) whena =2. The correctness of them have been checked

by Maple.
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4. Variable-Separating Method

Variable-separating method is a classical method to solve
partial differential equations. In [26], the author proposed a
new variable-separating method. In the following (2) will be
solved by the two variable-separating methods.

Form the second equation of (2), one can easily get

1
u=-—w,-avy,).

B

Substituting (18) into the first equation of (2), one can
obtain

(18)

Vit TV TV T AV FVV,

(19)

- v 2=
vy, Ty, —av,” =0.

Obviously, one only need to solve (19) instead of solving
(2).
4.1. New Variable-Separating Method

According to the new variable-separating method, one may
assume

v=0+M, (20)
where Q =Q(x),M =M (t). Substituting (20) into (19), one
can get

My +00, =000 +0uM, ~00Q,* =0.  (21)
Let

0=Gx* +G,x+G;, (22)

where G; (i=1,2,3)
(21), one can get

are constants. Substituting (22) into

M, +2G,M, -4aG? =0. (23)

(23) is an ordinary differential equation, it has solutions

M =G5 260, 2aGt +Gs,

where G, and Gs are constants. Therefore, the solution of
(2) are obtained as

u =G4 J260
o (24)
v =Gx? +Gx+G, —2—4e<‘201’> +2aGyt +Gs.
1
The solution (24) is different with the solutions

(f;»u;,v;) (=12,...,19) in section 2 and 3, since it is not

travelling wave solutions. In addition, (24) is satisfied for all
values of a while the travelling wave solutions

(fi,u;,v;) (i =1,2,...,19) are only satisfied for a =2 . That is
to say, (f;,u;,v;)(i=1,2,...,19)are solutions of (2) when it is

Painleve integrable, and (24) is a solution of (2) whether it is
Painleve integrable or not.

4.2. Classical Variable-Separating Method
According to the classical variable-separating method, let
v=0M, (25)

where Q =Q(x),M = M(t). Substituting (25) into (19), one
gets

OM, -0.M, (a@+h+ a0, M~

aM* (0,00 +0u2) + MM, (0,2 +00,,) = 0. (26)

It is difficult to give all explicit solutions of (26), so some
particular cases are given.
Let

0 =e%", 27)
where G, is constant. Substituting (27) into (26), one can get
2GS M(M, -aGM)e* " +

28
¢ (-G (M, - aGEM)~(M, -aGiM), %)

0.
From (28),
M = G7e(aG52t),

where G, is constant. Therefore, a solution of (2) is obtained

as
u=0,
v= G7e((1G62t+G6X). (29)
Let O =Gy in (26), then
M =Gyt + Gy, (30)

where G; (i =8,9,10) are constants. Then a solution of (2) is
obtained as

u= GyGy
B (31)
v =Gg(Got + Gyg).
Let M =1 in (26), one can get
A0y ~ A0, 0 + 0 = 0. (32)

From (32),
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1 1
0=-2 ln(_Ean _EGlz)-

Then a solution of (2) is obtained as

-2aG,?

Us————"">—,
(G x+Gy)" B (33)

1 1
=2In(-—G;;x——G},),
v ( > 1x > 12)

where G, and G|, are constants, —% Gy x —%Glz > 0.

Remark 3 The solutions (29), (31) and (33) are satisfied for
all values of @ in (2). Although the expressions of (29), (31)
and (33) are simple, they all reflect different phenomenon of
chemotaxis. For example, (31) describes a particular case
when the cell density » is unchanging, the corresponding
concentration of the chemical substance v is a linear
function of time ¢.

Remark 4 Compared with the work in [21], more new exact
solutions for the particular integrable case when @ =2 are
given. Furthermore, exact solutions for the general case
a >0 are obtained. In addition, all the obtained solutions
have explicit expressions, so they are easier to use.

5. Conclusion

A mathematical model of chemotaxis (the movement of
biological cells or organisms in response to chemical gradients)
named as parabolic —parabolic Keller-Segel (PP-KS) equation
is considered in this paper. By using the generalized tanh
function method and ( G' /G)-expansion method, plenty of
new travelling solutions are obtained for the particular
integrable case ( @ =2 ) of the PP-KS model (2). These
solutions contain hyperbolic function solutions, triangular
periodic solutions and rational function solutions. By using
classical variable-separating method and new
variable-separating method, a lot of algebraically explicit
analytical solutions are obtained for the general case (a >0)
of the PP-KS model (2). Compared with the results in [21],
more new exact solutions for the PP-KS model have been
derived whether it is Painleve integrable or not, and the
obtained solutions in this paper all have explicit expressions.
They can be used in numerical simulation and help one to
understand the mechanism reflected by PP-KS model. In the
future, exact solutions of the generalizations of the KS model
will be studied since they play critical roles in a wide range of
biological phenomena.
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