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Abstract: In this paper, to be the Riesz matrix is symbolized by �, it is defined the spaces �����, ���� and �����, where for 

instance ����� 	 
� 	 ���� ∈ �� lim� �
��∑ ������ �� 	 0� and computed its duals (α-dual, β-dual and γ-dual). Furthermore, it 

is investigated topological structure of ����� and determined necessary and sufficient conditions for a matrix � to map �����, 
or �� into ��	or �����. 
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1. Introduction 

The study of sequence spaces is in fact a special case of the 

more general study of function spaces if the domain is 

restricted to the set of natural numbers N. The set w of all 

functions from the natural numbers N to the field K of real R 

or complex numbers C, can be turned into a vector space. In 

other words, let w be the set of all (real-or) complex valued 

sequences �����∈ , i.e., �� ∈ �  under the operations of 

pointwise addition and scalar multiplication given by 

�����∈ ! �"���∈ 	 ��� ! "���∈  

and #�����∈ 	 �#����∈ , for every �� , "� ∈ �	and scalar λ 

form a vector space over C. Any subspace �	of w is then 

called a sequence space. In other words, a sequence space is a 

vector space whose elements are infinite scalar sequences of 

real or complex numbers and is closed under the coordinate 

wise addition and scalar multiplication. If it is closed under 

coordinate wise multiplication as well, it is called a sequence 

algebra. Sequence spaces when equipped with a linear 

topology form topological vector spaces, [1]. 

The spaces ��, � and �� are the linear spaces of complex 

bounded, convergent and null sequences respectively, i.e., l∞ = 

{x = (xk) ∈ w: supk|xk| < ∞}, c = {x = (xk) ∈ w: limk xk exists}, 

c0 = {x = (xk) ∈ w: limk xk = 0}.  

The multipliers from X into Y are given by 

$% 	 �" ∈ �|�" ∈ ', ∀� ∈ $� 
for X, Y ⊂ w, where �" is the coordinate wise product, i.e., �" 	 ���"���∈ . We notates 

�$%�* 	 $%* 	 �" ∈ �|�" ∈ +, ∀� ∈ $%� 
for	X,	Y,	Z	⊂	w. A sequence space X is called Y-space if X =X

Y
 

Y
. Classical α-, β- and γ- duals of X are given by X

l,
 X

cs
 and X

bs
, 

respectively, where	
� 	 3� 	 ���� ∈ �45|��| 6 ∞

�
8, 

	�9 	 3� 	 ���� ∈ �45�� 	:9	�;<=>?@><A
�

8, 

	B9 	 3� 	 ���� ∈ �49C��|5��| 6 ∞
�

8. 
These are Banach spaces with their natural norms. We know 

that φ ⊂ X
α
 ⊂ X

β
 ⊂ X

γ
. If X ⊂ Y then Y 

ζ
 ⊂ X

ζ
 and for every X 

we have X
ζ
 = X

ζζζ
, X ⊂ X

ζζ
, where ζ is one of the α-, β- or 

γ-duals. [2-4]. 

Let X and Y be two sequence spaces and let E 	 �F��� be 

an infinite matrix of complex numbers F�� where n, k ∈ N. 

Then we say that A defines a matrix transformation from X 
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into Y and we denote it by writing A: X → Y if for every 

sequence x = (xk) ∈ X, the sequence Ax = {(Ax)}, the 

A-transform of x, is in Y, where  

(E�)� 	= ∑ F���� , G< ∈ H, � ∈ I��(E)J	�         (1) 

and by D00(A) denotes the subspace of w consisting of x ∈ w 

for which the sum exists as a finite sum. By (X: Y), we denote 

the class of all matrices A such that A: X → Y. Thus A ∈ (X: Y) 

if and only if the series on the right side of (1) convergent for 

each n ∈ N and each x ∈ X and we have Ax = {(Ax)n}n∈N ∈ Y for 

all x ∈ X. For an arbitrary sequence space X, the matrix domain 

XA (or X (A)) of an infinite matrix A in X is defined by XA = {x ∈ w: Ax ∈ X}, which is a sequence space. 

Kızmaz [5] defined the sequence spaces 

��(∆) = �� = (��)|∆� ∈ ���, �(∆) = �� = (��)|∆� ∈ ��, 	��(∆) = �� = (��)|∆� ∈ ���, 
where ∆� = (∆��) = (�� − ��M�), and showed that these are 

Banach spaces with norm ‖�‖ = |��| + ‖∆�‖�. After then Et 

[6] defined the sequence spaces ��(∆O), �(∆O), ��(∆O) where ∆O� = (∆O��) = (∆�� − ∆��M�), and showed that these are 

Banach spaces with norm ‖�‖� = |��| + |�O| + ‖∆O�‖� . 

Recently Pooja [7] study on m
th

 difference sequence spaces 

and Khan [8] works on some inclusion relations between the 

difference sequence spaces defined by sequence of moduli.. In 

addition, similar topics are studied and genaralized by some 

author [9-10]. 

2. Main Results  

Let � = (��) and (P�) be given p0 > 0, ��≥ 0 (∀k, n ∈ 

N), P� = ∑ ������ . Let the matrix � = �Q = (�, �) =(�, ��) = ?�� defined by  

(?��) = 3 ��P< , R ≤ <	0, ;Aℎ>?�:9> 

is called a Riesz matrix (associated with the sequence p) and 

(?U�<R) = V(−1)�U� P��� , R ≤ < ≤ R + 1
	0, R + 1 < <  

is called inverse matrix of Riesz matrix. Also, for Rx = y, we 

get  

"� = 1P�5 ����<
���  

and 

�� = �Q� (P�"� − P�U�"�U�)	 or �� = ∑ (−1)�U� �XQ� "�����U� . 
Now we define 

��(�) = 3� = (��): sup� 4 1P�5�����
���

4 < ∞8, 
�(�) = 3� = (��): lim� 4 1P�5���� − ��

���
4 = 0, � ∈ �8, 

��(�) = 3� = (��):	lim	� ] 1P�5�����
���

^ = 08. 
These spaces are sequence spaces and are normed spaces 

with norm ‖�‖_(`) = sup|���|  where E is one of the 

sequence spaces ��, �, ��	respectively. 

Teorem 2.1. Let X be a normed space and � = (��) be a 

sequence in X. We also define the operator 

a: ��(�) → �c 

	� → a� = �� = 1P�5�����
���

 

Then T is a linear isometry. 

Proof. Let ∀x, �d ∈ c0(R) and α ∈ K. The equality 

T (αx +�d) = R (αx + �d) = αRx + R�d = αT x + T�d 
holds. From this, we get that the operator T is a linear. If the 

equality T x = T�d holds, then we have 

1P�5��(�� − �d�) = 0.�
���

 

By induction method, we have �� = �d� for all n ∈ N. 

Therefore the operator T is injective. Furthermore, because 

the operator T is bijective, we get immediately that c0(R)≅c0. 

Theorem 2.2. Gf(�), ||. ||_(`)J are normed spaces where 

E is one of the sequence space ��, �,��. 

Proof. Let E be c0 sequence space and α ∈ K.  

(i) ||�||gh(`) = 0 ⇔ sup� � ���∑ �������� � = 0 

	⇔ sup 1P�5�����
���

= 0 

	⇔ � = 0	for	all	< ∈ H. 
(ii) ||F�||gh(`) = ‖F��‖gh = 9C� � ���∑ F�������� � 

= |F|. ‖��‖gh = |F|. ||�||gh(`) 
(iii) For �, �d ∈ ��(�), ||� + �d||gh(`) = ||�(� + �d)||gh

= sup� 4 1P�5��(�� + �d�)�
���

4 
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≤ 9C�� 4 1P�5����
�

���
4 ! 9C�� 4 1P�5���′�

�

���
4

≤ ||��||gh + ||��′||gh≤ ||�||gh�`� + ||�d||gh�`�. 
From (i), (ii) and (iii) we immediately get G�����, ||. ||gh�`�J  is a normed spaces. Similarly we can 

prove for other sequence spaces. 

Teorem 2.3. The normed spaces G�����, ||. ||gh�`�J is a 

Banach space. 

Proof. Let (x
n
) be a Cauchy sequence in c0(R), where x

n
 = 

(x
n
) = (���, �O�, · · ·) ∈ c0(R), for each n ∈ N. Then for each ε > 

0, there exists N = N (ε), such that for all n, m ≥ N, 

‖�� − �l‖gh�`� = ‖���� − �l�‖gh 

= ‖��� − ��l‖gh < m. 

Therefore we obtain that Rx
n
 is a Cauchy sequence in c0 

whence by (c0,‖. ‖no) the Banach space, it converges to (Rx) 

say, i.e., there exists lim��� = �� ∈ ��. Now we must show 

that x ∈ c0(R). We have 

lim��� = �� ∈ �� ⇔ ‖��� − ��‖gh → 0. 

Thus, we get 

‖��� − ��‖gh  = ‖���� − ��‖gh=‖��� − ��‖gh�`�→ 0. 

So, it is corrected that �� → � ∈ ����� . This implies G�����, ||. ||gh�`�J is a Banach space.  

We shall quote some lemmas which are needed in proving 

our theorems concerning the p, q, r  duals of the Riesz 

sequence spaces. 

Lemma 2.1. Let R be a Riesz matrix. Then R ∈ (c0, c0) if and 

only if 

(i) lim� ?�� = 0, 
(ii) sup∑ |?��| < ∞.�  

Lemma 2.2. Let R be a Riesz matrix. Then R ∈ (c, c0) if and 

only if 

(i) lim� ?�� = 0, 
(ii) sup∑ |?��| < ∞,�  

(iii) lim∑ ?�� = 0.�  

Lemma 2.3. Let R be a Riesz matrix. Then R ∈ (c0, c) if and 

only if 

(i) lim� ?�� exists, 

(ii) sup∑ |?��| < ∞.�  

Lemma 2.4. Let R be a Riesz matrix. Then R ∈ (c0, l∞) if and 

only if 

(i) sup∑ |?��| < ∞.�  

Lemma 2.5. Let R be a Riesz matrix. Then R ∈ (c0, l) if and 

only if 

(ii) sup∑ |∑ ?��� | < ∞.����  

Teorem 2.4. Let R be a Riesz matrix and Pn → ∞ (n → 0) 

where P� = ∑ ������  for each n ∈ N, then the inclusion c0 ⊂ 

c0(R) holds. 

Proof. Let R be a Riesz matrix and � = ���� be a sequence 

in c0. Then the following statement is obvious. 

� ∈ �� ⇒ �� ∈ �� and �� ∈ �� ⇔ � ∈ G��,��J. 
By Lemma 2.1, we have � ∈ G��,��J ⇔ 

(i) lim� ?�� = 0, 
(ii) sup∑ |?��| < ∞.�  

Now we show the correctness of these statements. 

lim	t ?�� = lim��P� = �� lim 1P� = �� . 0 = 0, 
and 

sup5|?��| = sup5|��P� | = 1 < ∞.�  

This implies R ∈ (c0, c0) such that for each x ∈ c0(R). This 

completes the proof. 

Theorem 2.5. Let R be a Riesz matrix and sup |Pn| < ∞, then 

the inclusion c0(R) ⊂ c0 holds. 

Proof. Let R
−1

 be inverse of Riesz matrix and � = ���� be 

a sequence in c0(R). We need to find that x ∈ c0 or equivalent 

we need to find that R
−1

 ∈ (c0, c0). By Lemma 2.1, we can 

easily show the following statements. 

�:u� ?U��� = lim�−1��U� P��� = 0, 
sup5|?U���|� = 9C�5|�−1��U� P��� | = 1 < ∞.�  

This implies R
−1

 ∈ (c0, c0) such that for each x ∈ c0. Hence 

the proof is completed. 

Theorem 2.6. Let R be a Riesz matrix. Then we have 

(i) c0 ⊂ l∞(R) if and only if sup∑ |?��|� < ∞, 
(ii) The inclusion c ⊂ c0(R) is invalid. 

Proof. (i) If the inclusion c0 ⊂ l∞(R) holds, then the 

necessary and sufficient condition is that R ∈ (c0, l∞). By 

Lemma 2.4, we must show that 

sup5|?��| < ∞.�  

It is seen by Theorem 2.4. Hence, we say the inclusion c0 ⊂ 

l∞(R) holds. 

(ii) If the inclusion c ⊂ c0(R) holds, then the necessary and 

sufficient condition is that R ∈ (c, c0). By Lemma2.2, one can 

show that the validity of the options (i) and (ii). However, the 

part of (iii) is not provided, i.e.,	lim∑ ?�� = 1 ≠ 0.� Thus, we 

obtain that the inclusion c ⊂ c0(R) is invalid. 

Theorem 2.7. Let R be a Riesz matrix and � = ���� be a 

sequence in c0(R), " = �"�� be a sequence in c0. Then we 

have 
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(i) 

������	�w 	 3F 	 �F�� ∈ �: 9C�5 45�−1��U�F� P���� 4 < ∞�
��� 8, 

(ii) 

������	�x = ������	�y = zF = �F�� ∈ �:	 {∆ {F���| ��| ∈ �, {F� P���| ∈ 	��} 
Proof. (i) Let us take any F = �F�� ∈ �. We easily derive with 

F� = �F���� = ~F�5 �−1��U� P��� "��
��� � =5 �−1��U�F� P��� "��

��� = �a"�� 

For all R ∈ H, where a = �A��� is defined by 

A�� = V�−1��U�F� P��� , < − 1 ≤ R ≤ <0, ;Aℎ>?�:9>  

We also define the linear operator 

a: �� → � 
" → a" = F� ∈ �. 

By Lemma 2.5, we get 

(i) F	 ∈ 	 G�����Jw ⇔ F� ∈ �, ∀� ∈ �����, 

⇔ ∀�� = " ∈ ��, a" ∈ � 
⇔ a ∈ ���, �� ⇔ 9C�5 45A��� 4 < ∞�

���  

⇔ 
F = �F�� ∈ �: 9C� ∑ �∑ �−1��U�F� �XQ�� � < ∞���� �. 
(ii) Let � ∈ ����� and F ∈ �. Then " = �� ∈ ��, 

We get 

5F��� = 5{F� P��� − F�M� P���M�| "� + F� P��� "�
�U�
���

�
��� = ��"�� 

and we take � = ��� 	matrix, 

��� =
���
��F� P��� − F�M� P���M� , 0 ≤ R ≤ < − 1

F� P�	�� , R = <0, ;Aℎ>?�:9>
 

and so ∑ F������� =��"��. Then we have 

F	 ∈ 	 G�����Jx 	⇔ F� ∈ �9, ∀� ∈ ����� ⇔5F��� ∈ �, ∀� ∈ ������
���  

⇔ ��"�� ∈ �, ∀" ∈ �� ⇔ � ∈ ���, ��. 
By Lemma 2.3, we get  

������	�x = zF = �F�� ∈ �:	 {∆ {F���| ��| ∈ �	F<�	 {F� P���| ∈ 	��} 
On the other hand, ������	�y can be found in a similar 

way. 

Theorem 2.8. Let (X, Y) denote the set of all infinite 

matrices C which map X into Y. Then we have C ∈ (c0(R), c0) 

if and only if 

(i) D
(m)

 ∈ (c0, c), 

(ii) D ∈ (c0, c0) 

where the matrix D depends on the matrix C, (∀m ∈ N). 

Proof. If x ∈ c0(R) then y = Rx ∈ c0 ⇒ x = R
−1

y, we have 

���l�� =5�����l
���  

	= 5���� 1�� �P�"� − P�U�"�U���
l
���  

= 5 {����� − ���M��� | P�"� + ��l�l Pl"llU�
��� = I��l�" 

Now we also define the matrix: 

����l� =
���
��	{

����� − ���M��� | P� , R < u��l�l Pl	, R = u	0, ;Aℎ>?�:9>
 

Hence, by Lemma 2.1 and Lemma 2.3, we get 

(i) D
(m)

 ∈ (c0, c)⇔ 

(1) 	9C� ∑ |���|� 	 9C�∑ �g�XQX − g�X��QX � P� 6 ∞�  and 
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�g��Q� Pl� 6 ∞ 

(2) lim� ��� = lim� �g�XQX − g�X��QX�� � P� exists. 

(ii) I ∈ ���, ��� ⇔ 

(1) 9C�∑ |���|� 	 9C�∑ �g�XQX − g�X��QX � P� 6 ∞�  and �g��Q� Pl� < ∞ 

(2) lim� ��� = lim� �g�XQX − g�X��QX�� � P�=0. 

Hence, it is clear that C ∈ (c0(R), c0). Conversely, this is 

obtained by the same kind of argument. 

Theorem 2.9. Let C be a matrix. Then we have � ∈G��, �����J	if and only if 

(i) sup∑ � ���∑ ��������� � < ∞���� , 

(ii) lim ���∑ ����� = 0���� . 
Proof. Let C ∈ (c0, c0(R)). For each x ∈ c0, Cx exists and 

we have Cx ∈ c0(R) ⇒ RCx ∈ c0 ⇒ RC ∈ (c0, c0). 

If D is a matrix RC, then we can take ��� = ���∑ ����� .����  

By Lemma 2.1, there is a matrix C that provides the 

following statements such that 

sup∑ � ���∑ ��������� � < ∞����  and lim ���∑ ����� = 0���� . 
This is the desired result. In addition, the sufficient 

condition is trivial. 

3. Conclusion 

In this paper, to be the Riesz matrix is symbolized by �, we 

define the spaces �����, ���� and ����� and compute duals 

(α-dual, β-dual and γ-dual) of �����. Also, it is shown that if 

the matrix R are a regular matrix and sup|P�| 6 ∞  then �� = �����. Finally, we investigate topological structure of ����� and determine necessary and sufficient conditions for a 

matrix � to map �����, or �� into ��	or �����. 
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