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Abstract: The two variable 	(�� �⁄ , 1 �⁄ )-expansion method is significant for finding the exact traveling wave solution to 

nonlinear evolution equations (NLEEs) in mathematical physics, applied mathematics and engineering. In this article, we exert 

the two variable (�� �⁄ , 1 �⁄ )-expansion method for investigating the fractional generalized reaction Duffing model and 

density dependent fractional diffusion reaction equation and obtain exact solutions containing parameters. When the 

parameters are taken particular values, traveling wave solutions are transferred into the solitary wave solutions. The two 

variable (� ′ �⁄ , 1 �⁄ )-expansion method is the generalization of the original (�� �⁄ )-expansion method established by Wang et 

al [21]. 
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1. Introduction 

The significance of nonlinear evolution equations is now 

well established. In the last three decades nonlinear 

phenomena are one of the most impressive fields of research. 

Nonlinear phenomena occur in various branches of science, 

engineering and biology, such as fluid mechanics, plasma 

physics, solid state physics, optical fiber, gas dynamics, 

elasticity, biomechanics, relativity, ecology, biophysics and 

so on. Since the appearance of solitary wave in natural 

science is expanding day by day, it is important to find the 

solitary wave solutions to NLEEs. The exact solutions to 

NLEEs help us to provide information about the structure of 

complex phenomena. As a key problem, finding their exact 

solutions is of great importance and it is actually executed 

through various efficient and powerful method, such as, the 

Hirota method [1], the Backlund transform method [2, 3], the 

inverse scattering transform method [4], the Jacobi elliptic 

function expansion method [5-7], the truncated Painleve 

expansion method [8-11], the tanh function method [12-15], 

the Exp-function method [16-22], the (�� �⁄ ) -expansion 

method [23-30], the improved (�� �⁄ ) -expansion method 

[31-32], the two variable (�� �⁄ , 1 �⁄ ) -expansion method 

[33, 34], the first integral method [35] etc. The main concept 

of the (�� �⁄ ) -expansion method is the exact solution of 

nonlinear NLEEs are revealed by a polynomial in one 

variable (�� �⁄ )  in which � = �(
)  satisfies the second 

order ordinary differential equation (ODE) ���(
) +
���(
) + 
�(
) = 0 , where �  and 
  are constants. In this 

article, we use the two variable (�� �⁄ , 1 �⁄ ) -expansion 

method, which is the general case of the(�� �⁄ )-expansion 

method. The main concept of the two variable (�� �⁄ , 1 �⁄ )-
expansion method is the exact traveling wave solutions of 

nonlinear NLEEs can be written as a polynomials in two 

variables (�� �⁄ ) and (1 �⁄ ), in which � = �(
) satisfies a 

second order linear ODE���(
) + ��(
) = 
, where � and 
 

are constants. The degree of the polynomial can be evaluated 

by taking homogeneous balance between the highest-order 

derivatives and nonlinear terms in the given nonlinear PDEs, 

where the coefficient of the polynomial can be determined by 

solving a set of algebraic equations. Recently, Li et al [33] 
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and Zayed et al [34] applied the two variable (�� �⁄ , 1 �⁄ )-
expansion method and determined the exact solution of 

nonlinear NLEEs. 

The objective of this article is study the fractional 

generalized reaction Duffing model and density dependent 

fractional diffusion reaction equation by making use of the 

two variable (�� �⁄ , 1 �⁄ )-expansion method. 

2. Description of the Two Variable 

(�� �⁄ , � �⁄ )-expansion Method 

Before starting the description of the (�� �⁄ , 1 �⁄ ) -

expansion method [33, 34], we discuss about the following 

fundamental concepts. Let us consider the second order 

ordinary differential equation (ODE): 

���(
) + ��(
) = 
,	                               (1) 

where, � = (�� �)⁄  and � = 1 �⁄ , then we obtain 

�� = −�� + 
� − ��� = −��.                       (2) 

Remark 1: If � < 0, the general solution of equation (1) is: 

�(
) = �� sinh�√−�
� + �� cosh�√−�	
� + !
"         (3) 

where �� and �� are arbitrary constants. 

Consequently, we obtain 

�� = #"
"$%&!$ (�� − 2
� + �)	                     (4) 

where ( = ��� − ���. 

Remark 2: If � > 0, the general solution of equation (1) is: 

�(
) = �� sin�√�
� + �� cos√�
 + !
"	             (5) 

where ��  and ��  are arbitrary constants. Consequently, we 

obtain 

�� = "
"$%#!$ (�� − 2
� + �)	                   (6) 

where ( = ��� − ���. 
Remark 3: If � = 0, the general solution of equation (1) is: 

	�(
) = !
� 
� + ��
 + ��                        (7) 

where �� and �� are arbitrary constants and hence 

�� = �
+,$#�!+$ (�� − 2
�)	                      (8) 

Assume the nonlinear partial differential equation is in the 

form 

- = �., ./ , .0 , .00 , .0/ , .//,…�                   (9) 

where . = .(2, 3)  is an unknown function and -  is a 

polynomial of .(2, 3) and its partial derivative. 

Step 1: Consider the traveling wave transformation 


 = 2 − 43, .(2, 3) = .(
), 
where 4 is the speed of traveling wave. 

The wave variable permits us to reduce equation (9) into 

an ODE for	. = .(
): 
5 = (., .�, .��, .���, … ) = 0                  (10) 

where 5 is a polynomial of .(
) and its total derivative with 

respect to 
. 

Step 2: Assume that the solution of equation (10) can be 

written as a polynomial in two variables �	and � as follows: 

	.(
) = ∑ 78�8 + ∑ 98�8#��:8;�:8;< 	             (11) 

where, 78 	(= = 0,1, … , >) and 98 	(= = 0,1, … , >) are constant 

to be determined later. 

Step 3: Taking homogeneous balance between the highest 

order derivatives and the nonlinear terms appearing in 

equation (10) to determine the positive integer > in equation 

(11). 

Step 4: Substitute equation (11) into equation (10) along 

with (2) and (4), the equation (10) can be reduce into a 

polynomial in � and	�, in which the degree of � is no longer 

than one. Equating the coefficients of this polynomial of like 

power to zero gives a system of algebraic equations which 

can be solved by using the software Maple or Mathematica to 

get the values of 78 , 98 , 4, 
, ��, �� and � where � < 0. 

Step 5: Similar application to step 4, substitute equation 

(11) into equation (10) along with (2) and (6) for � > 0	(or 

(2) and (8) for 	� = 0) , we attain the exact solutions of 

equation (10) represented by trigonometric functions (or by 

rational function respectively). 

3. Application 

3.1. The Fractional Generalized Duffing Model 

In this subsection, we apply the two variables 

(�� �⁄ , 1 �⁄ )-expansion method to obtain exact solutions of 

fractional generalized Duffing model which is in the form: 

?$@A(0,B)
?B$@ + C ?$@A(0,B)

?B$@ D.(2, 3) + E.�(2, 3) + F.G(2, 3) = 0                                              (12) 

where 	3 > 0, 0 < H ≤ 1, here C, D, E  and F  are constants. If 

we take E = 0, then Eq. (12) converts into 

?$@A(0,B)
?B$@ + C ?$@A(0,B)

?B$@ D.(2, 3) + F.G(2, 3) = 0     (13) 

where 3 > 0, 0 < H ≤ 1. 

Now we introduce the fractional wave transformation: 


 = J0@
⎾(�&K)− LB@

⎾(�&K)                            (14) 

where M and N are non-zero constants. 

Using the transformation (14), Eq. (12) reduced into the 

following ODE for . = .(
): 
(M� + PQ�).R + D. + F.G = 0                   (15) 
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Balancing the highest order derivative .″  and nonlinear 

term .G, yields > = 1. 
Therefore the solution (11) is of the following form: 

.(
) = 7< + 7�	�	(
) + 9��(
)                     (16) 

Case 1.1: For � < 0,  substituting Eq. (16) into Eq. (15) 

along with Eq. (2) and Eq. (4) yields a polynomial equation 

and setting each coefficient polynomial to zero gives a set of 

algebraic equations for 7<, 7�, 9�, 
, (, �, C, D, F, T  and Q  as 

follows:

�<:	2F9�G�G
 − D7<�U(� − T�9���
G − F7<G�U(� + 3F7<9����
� − F7<G
U − T�9��U
( − 2F7<G
�(�� − 2D7<
���(− CQ�9���
G − D7<
U + 3F7<9���U( − CQ�9��U
( = 0 

�� :	− D7��U(� − 2CQ�7��
U − 6F7<�7���(
� + 3F7�9����
� − 4CQ�7��G(
� − D7�
U − 3F7<�7�
U(� − 2T�7��Y(�
− 2T�7��
U − 2CQ�7��Y(� − 3F7<�7�
U − 2D7�
���( + 3F7�9���U( − 4T�7��G(
� = 0 

φ� :	− T�9��G
( − CQ�9��G
( − 3F7<7���U(� + 3F7<9���G( + 2F9�G��
 − 6F7<7����(
� − CQ�9��
G − 3F7<7��
U− T�9��
G + 3F7<9���
� = 0 

φG: 3F7�9���
� − 4CQ�7���(
� − F7�G
U − 2T�7�
U − F7�G�U(� − 2CQ�7��U(� + 3F7�9���G( − 4T�7�
���( −
2F7�G
���( − 2CQ�7�
U − 2T�7��U(� = 0                                                       (17) 

�:	T�9��
U − 6F7<�9���(
� − 3F7<�9�
U − CQ�9��Y(� − 29�
U + CQ�9��
U − D9��U(� − T�9��Y(� − 2D9�
���(− 6F7<9���G
( − 3F9�G��
� − 6F7<9���
G − 3F7<�9��U(� + F9�G�U( = 0 

��: 6CQ�7�
G��( + 6T�7�
G��( − 6F7<7�9�
U + 3CQ�7�
�U(� − 12F7<7�9�
���( + 3T�7�
�U(� + 3CQ�7�
Y− 6F7�9���
G − 6F7�9���G
( − 6F7<7�9��U(� + 3T�7�
Y = 0 

���: F	9�G�G( + F9�G�
� − 3F7��9��U(� − 2CQ�9�
U − 3F7��9�
U − 2T�9��U(� − 2T�9�
U − 4T�9���(
� − 4CQ�9�
���(− 6F7��9�
���( − 2CQ�9��U(� = 0 

Solving the system of algebraic equations in (17) by using symbolic computation software like, Maple or Mathematica, we 

obtain the following results: 

7< = 0, 7� = ±\ ]
^", 9� = ±\#]!$#]"$%

^ , Q = Q, T = \#�]#_`$"
"  

Family 1.1.1:.(
) 	= 	±\ ]
^" × b+,√#"		cd^e�√#"f�&+$√#" ghij�√#"f�+, ghij�√#"f�&+$	cd^e�√#"f�&k

l
m 

±\#]!$#]"$%
^ × �

+, ghij�√#"f�&+$	cd^e�√#"f�&k
l
,                                                    (18) 

where ( = ��� − ���. 
Family 1.1.2: If �� = 	0, �� 	≠ 	0 and 
 = 0 in (18), we obtain the solitary wave solution 

.(
) = 	±\ ]
^" ∙ √−�		37pℎ�√−�
� ± \#]"$%

^ ∙ �
+$ FrTℎ�√−�
�.                                     (19) 

Family 1.1.3: If � ≠ 0, � = 0 and 
 = 0, we obtain the solitary wave solution 

.(
) = 	±\ ]
^" 	√−�		Ts3ℎ�√−�
� ± \#]"$%

^ 	 �+$ TsFrTℎ�√−�
�                                    (20) 

Case 1.2: For � > 0, Substituting Eq. (16) into Eq. (15) along with Eq. (2) and Eq. (6) and equating the coefficients to zero 

yields a set of algebraic equation set of algebraic equations for 7<,7�, 9�, 
, (, �, T, C and Q as follows: 

�<:	T�9��U
( − 3F7<9���U( + 3F7<9����
� + 2F9�G�G
 − D7<�U(� − T�9���
G − F7<G�U(� + 2D7<
���( − F7<G
UD7<
U+ CQ�9��U
( − CQ�9���
G + 2FD<G
���( = 0 

�� :	− D7<
U + 4T�7<�G(
� − D7���(� + 3F7�9����
� − 2CQ�7��Y(� + 4CQ�7��G(
� − 3F7<�7�
U + 2D7�
���(− 3F7<�7��U(� + 6F7<�7�
���( − 2CQ�7��
U − 2T�7��
U − 3F7�9���( − 2T�7��Y(� = 0 

��: CQ�9��G
( − CQ�9��
G + 6F7<7��
���( + T�9���
( − 3F7<9���G( − 3F7<7��
U + 2F9�G��
 − 3F7<7���U(�
+ 3F7<9���
� − T�9��
G = 0 
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�G :	− F7�G
U − 2T�7�
U − F7�G�U(� − 2CQ�7�
U − 2T�7��U(� − 3F7�9����( + 4CQ�7�
���( − 2CQ�7��U(� + 2F7�G
���(+ 4T�7�
���( + 3F7�9���
� = 0 

�: 2D9�
���( − CQ�9��Y(� − D9�
U − 3F7<�9�
U − 3F7<�9��U(� − F9�G�U( − D9��U(� − 6F7<9���
G − T�9��Y(�
+ 6F7<�9�
���( − 3F9�G��
� + T�9��
U + CQ�9��
U + 6F7<9���G
( = 0 

��:	 − 6CQ�7�
G��( − 6F7<7�9�
U + 3T�7�
Y − 6T�7�
G��( − 6F7�9���
G − 6F7<7�9��U(� + 6F7�9���G
(+ 3CQ�7�
�U(� + 3CQ�7�
Y + 12F7<7�9�
���( + 3T�7�
�U(� = 0 

���: F9�G�
� − 2T�9��U(� − F9�G�G( − 2CQ�9�
U − 3F7��9�
U + 4CQ�9�
���( − 2CQ�9��U(� − 3F7��9��U(� +
4T�9�
���( − 2T�9�
U + 6F7��9�
���( = 0	                                           (21) 

Solving the algebraic equations given in (21) with the aid of Maple and Mathematica, we obtain the following results: 

T = ±\#_`$"#�]
" , 7< = 0,7� = ±\ ]

^", 9� = ±\]"$%#]!$
^ , and Q = Q 

Substituting these values into Eq. (16), we get the following solutions of Eq. (12). 

Family 1.2.1: 

.(
) ± \ ]
^" × b+,√"		cd^�√"f�#+$√" ghi�√"f�+, ghi�√"f�&+$	cd^�√"f�&k

l
m ± \]"$%#]!$

^ × b �
+, ghi�√"f�&+$	cd^�√"f�&k

l
m                     (22) 

where ( = ��� + ���. 

Family 1.2.2: When �� = 0, �� ≠ 0 and 
 = 0 in Eq. (22), we obtain the solitary wave solution 

.(
) = 	±\]
^ 	37p�√�
� ± \]"$%#]!$

^ 	 �+$ FrT�√�
�.                                       (23) 

Family 1.2.3: When �� ≠ 0, 	�� = 0 and 
 = 0 in Eq. (22), we obtain the solitary wave solution 

.(
) = 	±\]
^ Ts3�√�
� ± \]"$%#]!$

^ 	 �+$ TsFrT�√�
�.                                      (24) 

Case 1.3: For λ = 0, substituting Eq. (16) into Eq. (15) along with Eq. (2) and Eq.(8) yields a set of algebraic equations for 

7<, 7�, 9�	
	M, P, and N as follows: 

�<:	4D7<7��
7� − 4F7<G
�7�� − F7<G7�U − 4D7<
�7�� + 4F7<G7��
7� − D7<7�U = 0 

��: 4	D7�G
7� − 8CQ�7��
�7�� − 3F7<�7�Y + 12F7<�7�G
7� − 2T�7�Y� − 8T�7��7�� + 8T�7�G�7� + 8CQ�7�G�
7� − 2CQ�7�Y�− 4D7�
�7�� − 12F7<�7�
�7�� − D7�Y = 0 

��: 12u	7<7�U
7� − 2T�9�
�7� + CQ�9�
7�� − 2CQ�9�
�7� + 6F7<9��
7� + 2F9�G
 + T�9�
7�� − 12F7<7��
�7�� − 3F7<7�v− 3F7<9��7�� = 0 

�G:	6F7�9��
7� − 2CQ�7�Y + 8CQ�7�G
7� − 8T�7�
�7�� − 3F7�G9�� − F7�w − 4F7�G
�7�� − 8CQ�7�
�7�� + 4F7�Y
7�+ 8T�7�G
7� − 2T�7�Y = 0 

�:	 − T�9��7�U − D9�7�U − CQ�9�7�U� + 12F7<�9�
7�7�� + 4T�9�
G7� + 4D9�7��
7� + 4T�9��
7�7�� − 4F9�G
�− 12F7<9��
�7� − 4CQ�9��
�7�� − 3F7<�9�7�U − 2CQ�9�
�7�� + 4CQ�9�
G7� − 12F7<�9�
�7�� − 4D9�
�7��− 4T�9��
�7�� + 6F7<9��
7�� + 4CQ�9��7��
7� − 2T�9�
�7�� = 0 

��:	 − 12T�7�G
�7� + 3CQ�7�Y
 + 6F7�G9��
 + 12CQ�7�
G7�� + 3T�7�Y
 − 24F7<7�9�
�7�� − 6F7<7�Y9� − 12CQ�7�G
�7�+ 12T�7�
G7�� + 24F7<7�G9�
7� − 12F7�9��
�7� = 0 

��� :	− 3F7�v9� − 2T�9�7�U − 12F7��9�
�7�� − 8T�9�
�7�� + 12F7�U9�
7� − 2CQ�9�7�U + 8T�9�
7�7�� + 8CQ�9�7��
7� −8CQ�9�
�7�� − F9�G7�� + 2F9�G
7� = 0                                                      (25) 

Solving the algebraic equation with the aid of Maple or Mathematica, we obtain the following results: 

7< = 7<, 7� = ±x2
7�, 9� = 0, Q = Q, T = T 

Substituting this into Eq. (17), we get the solution of Eq. (12) as follows: 

Family: 1.3.1: 
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.(
) = 7< ± x2
7� b !f&+,k
$f$&+,f&+$

m                                                        (26) 

3.2. The Density Dependent Fractional Diffusion Reaction Equation 

In this subsection we apply the (�� �⁄ , 1 �⁄ )-expansion method to obtain exact solution of density dependent fractional 

diffusion reaction equation which can be given in the form: 

?@y(0,B)
?B@ + Qz(2, 3) ?@y(0,B)?0@ = { ?$@y(0,B)

?0$@ + 7z(2, 3) − 9z�(2, 3)                                     (27) 

where, 3 > 0, 0 < H < 1.	 
Introducing the following transformation: 


 = _0@
|(�&K) − cB@

|(�&K) , z(2, 3) = .(
)                                                   (28) 

where C and T are non-zero constants. Using traveling wave variable, equation (27) reduced into the following ODE forz =
z(
): 

{C�.�� + T.� − QC..� + 7. − 9.� = 0                                             (29) 

Balancing the highest order derivatives in linear and nonlinear terms, we get > = 1. Therefore the solution of (29) is of the 

form: 

.(
) = 7< + 7��(
) + 9��(
)                                                    (30) 

Case 2.1: For � < 0, substituting equation (3.19) into equation (29) along with equation (2) and equation (4) yields a set of 

algebraic equation for 7<, 7�, 9�, {, C, T, �, 
, ( as follows: 

�< :	− QC7<7��
� + T7��
� + 97<���( − 77<��( − QC7<7��G( − QC9���7�
 + T7��G( − {C�9���
 − 99���� + 97<�
�− 77<
� = 0 

1 2 2 2 2 2 2 2 3 2 2 2 2

1 1 1 1 1 0 1 0 1 1

2 3

1

: 2 2 2 2

0

− − + − − + + −

− =

aa Dp a kpb aa Dp a ba a ba a kpa

kpa

φ λ σ λµ λ µ λ σ λ σ µ µ λ
λ σ

2 2 2 2 2 2 2 2 2 2 2

0 1 1 1 1 0 1 1 1 1 1 1: 0− − + − + − + − + =kpa a kpb a ba kpa a ca bb ca Dp b baφ µ λ µ µ λ σ λ σ λ µ λµ λ σ
3 2 2 2 2 2 2 2 2

1 1 1 1 1: 2 2 0− + − − − =kpa kpb kpa Dp a Dp aφ λ σ λ µ λ σ µ
 

2 2 3 2 3 2 3 2 2

1 1 0 1 1 0 1 1 0 1 1 1

2 2 2 2 2 3

1 1 0 1 1 1 1

: 2 2

2 0

− − + − + − + +

+ − + + − =

ab ca kpa a Dp b ba b ca ba b kpb a

Dp b ab kpa a bb kpb a

ψ µ µλ σ µ λ σ λ σ µ µ λµ
λµ λ σ µλ σ λµ λ σ

 

2 2 3 2 2 2 2 2 2 2

1 1 1 1 0 1 0 1 1 1 1

2 3 2 2 2

1 1 1 1

: 3 2 3 2

2 0

+ − + − − + +

+ + + =

cb Dp a kpb Dp a kpa b kpa b cb ba b

kpa kpa ba b

ψφ λ σ µ λµ µλ σ λ σ µ µ µ
µ µλ σ λ σ

 

2 2 2 2 2 2 2

1 1 1 1 1 1: 2 2 2 2 0− − − − =kpa b Dp b Dp b kpa bψφ µ µ λ σ λ σ                                             (31) 

Solving the algebraic equation (31) by using the software 

Maple or Mathematica, we obtain the following results: 

7< = }
�~,7� = ±}\# ,

�l
~ , 9� = ±}x!$&"$%

�"~ , T = ± (U~$�&`$})}
�~$�"\# ,

�l
 

and C = ± }`\# ,
�l

~� . 

Substituting this into equation (30) we get the solution of 

(29) as follows: 

Family 2.1.1: 

1 2

1 2

2 2

1 2

1

cosh( ) sinh( )4
( )

2
sinh( ) cosh( )

1

2
sinh( ) cosh( )

− − − + − −
= ±

− + − +

+
± ×

− + − +

a
A Aa

U
b b

A A

a

b
A A

λ λξ λ λξλξ µλξ λξ
λ

µ λ σ
µλ λξ λξ
λ

    (32) 

where, 
2 2

1 2= −A Aσ . 

Family 2.1.2: If�� = 0, 2 0≠A  and 0=µ  in (32), we get 

the solitary wave solution 
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2 2

2

1
. tanh( )

14
( ) . sec ( )

2 2

− − +
= ± ± −

a
aa

U h
b b b A

λ λξ µ λ σλξ λξ
λ

.    (33) 

Family 2.1.13: If 1 0≠A , �� = 0 and 
 = 0 in (32), we get 

the solitary wave solution 

2 2

1

1

14
( ) . coth( ) . cos ( )

2 2

− +
= ± − − ± −

a
aa

U ech
b b b A

µ λ σλξ λ λξ λξ
λ

.  (34) 

Case 2.2: For � > 0 , substituting equation (30) into 

equation (29) along with equation (2) and (6) yields a set of 

algebraic equation for 0 1 1, , , , , , , ,a a b D p c λ µ σ  as follows: 

0 2 2 2 2 2 2 2 3 2 2 2 2

1 0 1 1 1 1 1 0 0

2 2 3

0 0 1 0 1

:

0

− − − − − + + +

− − + =

Dp b ba kpb a bb ca ca aa ba

aa kpa a kpa a

φ λ µ λ σ λ µ λ λ σ λµ λ σ µ
µ λµ λ σ

 

1 2 3 2 2 2 2 2 2 2 3

1 0 1 1 0 0 1 1 1

2 2 2 2

1 1

: 2 2 2

0

+ + − − − +

+ − =

kpa ba a aa aa ba a Dp a Dp a

kpb kpa

φ λ σ µ λ σ µ λ σ λµ λ σ
λ λµ

 

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 0 1 1 1 1 0 1 1 0= + − − − − + + − =ca ba Dp b bb kpa a kpb a ba kpa a caφ µ µ λµ λ µ λ µ λ σ λ σ λ σ
 

3 2 2 2 2 2 2 2 2 2

1 1 1 1 1: 2 2 0− + + − =kpa Dp a kpb Dp a kpaφ λ σ µ λ λ σ µ
 

�:−M7�
G + M7�
��( + NP7<7�
G + {P�9��
� + 297<9�
� + {P�9��G( + NP9�7��G( + NP9�7��
� − NP7<7�
��(− 297<9���( + 299���
 − 79�
� + 79�
� + 79���( = 0 

��:	 − NP7<9�
� + M9�
� + NP7��
G − M9���( + NP7<9���( − 297�9���( − 2NP9���
 + 297�9�
� + 3{P�7�
G− NP7��
��( − 3{P�7�
��( = 0 

���: 2{P�9���( − 2NP7�9�
� − 2{P�9�
� + 2NP7�9���( = 0                               (35) 

Solving the algebraic equation (35) by using the software Maple or Mathematica, we obtain the following results: 

7< = }
�~, 7� = ± }\# ,

�l
~ , 9� = ± }x!$#"$%

�"~ , 

M = ± �U~$�&J$⍺�}
�~$�"∙\# ,

�l
, and P = }J\# ,

�l
~� . 

Substituting this into Eq. (30), we get the solution of (29) as follows: 

Family 2.2.1: 

.(
) = 7
29 ±

7\− �
U"

9 × ��√�TsF�√�
� + ��√� sin�√�
�
�� sin�√�
� + ��TsF�√�
� + !

"
 

± }x!$#"$%
�"~ × �

+, ghi�√"f�&+$cd^�√"f�&k
l
                                                                    (36) 

where ( = ��� + ���. 
Family 2.2.2: If �� = 	0, �� 	≠ 	0 and 
 = 0	in (36), we get the solitary wave solution 

.(
) = }
�~ ±

}\# ,
�l

~ 	√�		37p�√�
� ± }x!$#"$%
�"~ 	 �+$ FrT�√�
�                                     (37) 

Family 2.2.3: If �� ≠ 	0, �� = 	0 and 
 = 0	in (36), we get the Solitary wave solution 

.(
) = }
�~ ±

}\# ,
�l

~ 	√�		Ts3�√�
� ± }x!$#"$%
�"~ 	 �+$ TsFrT�√�
�                                     (38) 

Case 2.3: For λ = 0, substituting Eq. (30) into Eq. (29) along with Eq. (2) and Eq. (7) yields a set of algebraic equations for 

7<, 7�, 9�	, {, P, M, �, 
, M, P	as follows: 

�< :	− M7�G� − 97<�7�� − 277<
7� − 2NP7<7��
7� + 77<7�� + 2M7��
7� + NP7<7�G� + 297<�
7� = 0 

�� :	− 277�
7� − 2NP7���
7� − 297<7�G + 2{P�7�G� − 4{P�7��
7� + 497<7�
7� + NP7�U� + 77�G = 0 



 Applied and Computational Mathematics 2017; 6(4): 177-184  183 

 

��: NP7<7�G − NP9�7�
 − 99�� + 297��
7� + 2M7�
7� − {P�9�
 − 2NP7<7�
7� − 97�U − M7�G = 0 

�G: 2{P�7�G + NP9�� − 4{P�7�
7� + NP7�U − 2NP7��
7� = 0 

�: 2NP9�7�
� − NP7<7�G
 + 2NP7<7�
�7� + M7�G
 + 2{P�9�
� + 79�7�� + 299��
 + 497<9�
7� − 2M7�
�7�+ NP9�7�G� + {P�9��7�� − 27�
7� − 2{P�9��
7� − 297<9�7�� − 2NP9�7��
7� = 0 

��: 6{P�7�
�7� − 3{P�7�G
 − NP7�U
 + 497�9�
7� + 2NP7��
�7� − 297�G9� + 2M9�
7� + 2NP9��
 − 2NP7<9�
7�+ NP7<9�7�� − M9�7�� = 0 

���: 2NP7�G9� + 2{P�9�7�� − 4NP7�9�
7� − 4{P�9�
7� = 0                                            (39) 

Solving the algebraic equation (39) by using the software 

Maple or Mathematica, we obtain the following results: 

7< = 7<, 7� = ±x2
7�, 9� = 0, M = M and P = P. 

Substituting this into Eq. (30), we get the solution of (29) 

as follows: 

Family 2.3.1: 

.(
) = 7< ± x2
7� × b !f&+,k
$f$&+,f&+$

m.              (40) 

4. Conclusion 

In this article, the two variable (�′ �⁄ , 1 �⁄ ) -expansion 

method is used to obtain further general and some new as 

well as some known solutions of the well-known fractional 

generalized reaction Duffing model and density dependent 

fractional diffusion reaction equation. If we take the special 

value of two parameters ��	 and ��, we get the solitary wave 

solutions. When 
 = 0  and 98 = 0  in (1) and (11) 

respectively, the two variable (�� �⁄ , 1 �⁄ ) -expansion 

method transferred to the original (�� �)⁄ -expansion method. 

Thus, the two variable (�′ �⁄ , 1 �⁄ ) -expansion is an 

extension of the (�′ �⁄ )-expansion method. The two variable 

(�′ �⁄ , 1 �⁄ ) -expansion method applied in this article is 

more efficient and more general than the original (�′ �⁄ )-

expansion method. 
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