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Abstract: In this paper, mathematical models of immobilized enzyme system that follow the Michaelis-Menten mechanism 

for both reversible and irreversible reactions are discussed. This model is based on the diffusion equations containing the non-

linear term related to Michaelis-Menten kinetics. An approximate analytical technique employing the modified Adomian 

decomposition method is used to solve the non-linear reaction diffusion equation in immobilized enzyme system. The 

concentration profile of the substrate is derived in terms of all parameters. A simple expression of the substrate concentration is 

obtained as a function of the Thiele modulus and the Michaelis constant. The numerical solutions are compared with our 

analytical solutions for slab, cylinder and spherical pellet shapes. Satisfactory agreement for all values of the Thiele modulus 

and the Michaelis constant is noted. Graphical results and tabulated data are presented and discussed quantitatively to illustrate 

the solution. 

Keywords: Mathematical Modeling, Nonlinear Differential Equations, Modified Adomian Decomposition Method, 

Michaelis-Menten Kinetics, Immobilized Enzyme 

 

1. Introduction 

Many problems in theoretical and experimental biology 

involve reaction diffusion equations with nonlinear chemical 

kinetics. Such problems arise in the formulation of substrate 

and product material balances for enzymes immobilized 

within particles [1] in the description of substrate transport 

into microbial cells [2], in membrane transport, in the 

transfer of oxygen to respiring tissue and in the analysis of 

some artificial kidney systems [3]. For such cases, the 

problem is often well poised as a two-point nonlinear 

boundary-value problem because of the saturation, 

Michaelis-Menten, or Monod expressions which are used to 

describe the consumption of the substrate. 

Mireshghi et al [4] provide a new approach for estimation 

of mass transfer parameters in immobilized enzymes 

systems. Benaiges et. al [5] studied the isomerzation of 

glucose into fructose using a commercial immobilized 

glucose-isomerase. The Michaelis-Menten equation is the 

most common rate expression used for enzyme reactions. 

This equation can also be used for immobilized enzymes [6, 

7]. Many authors discussed the application of immobilized 

enzyme reactors extensively, but immobilized enzyme 

engineering is still in its infancy. Several general categories 
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of immobilized enzyme reactors such on: batch reactors, 

continuous stirred reactors, fixed bed reactors and fluidized 

bed reactors exist. When the immobilized enzyme is in the 

form of spheres, chips, discs, sheets or pellets it can be packed 

readily into a column [8-10]. 

Many authors presented enzymatic kinetics of irreversible 

[11-15] and reversible [14-16] mechanism. Farhad et al. [15] 

solved the nonlinear differential equations in enzyme kinetic 

mechanism using finite difference method. To the best of our 

knowledge, till date, no rigorous analytical expressions for the 

steady-state concentration for immobilized mechanisms are 

derived. We have presented the analytical expressions for 

substrate concentrations for all the three cases of kinetic models 

and for all possible values of the parameters using modified 

Adomian decomposition method [16-21]. These results are 

compared with the numerical results and are found to be good in 

the agreement. A simple analytical expression of the 

concentration is obtained for various particle shapes and for 

external mass transfer resistance boundary condition. Also, the 

general expressions for the mean integrated effectiveness factor 

for all values of parameters are presented.  

2. Formulation of the Problem and 

Analysis 

The immobilized enzyme systems may be considered to be 

porous slab, cylinder and sphere shapes where enzymes are 

uniformly distributed on the surface and in the interior. 

Pictorial representation of the enzyme in the biocatalyst is 

provided in Figure. 1.  

 

Figure 1. Pictorial representation of the enzyme in the biocatalyst. 

It is further assumed that: (1) The kinetics of the free 

enzyme are described by the Michaelis-Menten equation for 

irreversible reactions and by the modified Michaelis-Menten 

equation for reversible reactions; (2) No partition effect 

exists between the particle surface and the interior; (3) The 

temperature, density, and effective diffusivity of reactants 

inside the particle are constant; (4) A quasi-steady-state 

condition is attained; (5). The partition effect between the 

support and bulk fluid phase is neglected; (6) Enzyme 

deactivation is neglected. Based on these above assumptions, 

the governing differential equations with boundary 

conditions for irreversible and reversible reactions are 

reported below. 

Nomenclature 

Symbols Définitions Units 

a  
Volume of the fluid phase in the 

reactor 
none 

Bi  Biot number reaction in the pellet none 

C  

Dimensionless substrate 

concentration for the reversible 

reaction in the pellet 

none 

C  

Dimensionless substrate 

concentration for the reversible 

reaction in the pellet 

none 

eD  
Effective diffusivity of the 

substrate in the pellet 
2 / mincm  

Ef  Effective factor none 

g  Pellet shape factor none 

1k  External mass-transfer co-efficient /cm s  

mK  
Irreversible reaction Michaelis 

constant 
3/kg m  

'
mK  

Reversible reaction Michaelis 

constant 
3/kg m  

mfK  
Reversible reaction Michaelis 

constant 
M  

mrK  
Michaelis constant of the reverse 

reaction 
M  

0v  Initial reaction rates none 

mV  
Irreversible maximum reaction 

rate 
3/ /kg s m cat  

mfV  Reversible maximum reaction rate 3/ /kg s m cat  

mrV  
Maximum velocity of the reverse 

reaction 
/ min/mol l cat  

R  Half-thickness of the pellet m  

S  
Irreversible substrate 

concentration inside the pellet 
3/mol cmµ  

eqS  
Equilibrium substrate 

concentration 
3/mol cmµ  

S  
Reversible substrate concentration 

inside the pellet 
3/mol cmµ  

bS  

Irreversible substrate 

concentration in the bulk fluid 

phase 

3/mol cmµ  

0bS  

Irreversible initial substrate 

concentration in the bulk fluid 

phase 

3/mol cmµ  

bS  
Reversible substrate concentration 

in the bulk fluid phase 
3/mol cmµ  

0bS  
Reversible substrate concentration 

in the bulk fluid phase 
3/mol cmµ  

t  Time min  

X  Dimensionless distance none 

x  Distance to the center none 

Y  Dimensionless reversible substrate 

concentration 
none 

Greek 

symbols 
  

α  
Dimensionless parameter in 

reversible reaction 
none 
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bβ  

Dimensionless parameter in 

irreversible reaction for bulk fluid 

phase 

none 

bβ  

Dimensionless parameter in 

reversible reaction for bulk fluid 

phase 

none 

0bβ  
Dimensionless parameter for 

initial fluid phase 
none 

φ  
Intrinsic modified Thiele modulus 

in irreversible reaction 
none 

φ  
Dimensionless parameter in 

irreversible reaction 
none 

2.1. Irreversible Reactions 

A differential mass balance equation for the substrate for 

irreversible reactions in dimensionless form can be 

represented as follows [15]: 

2
2

2

1

1 b

d C g dC C

X dX CdX
φ

β
−+ =

+
                  (1) 

The boundary conditions are given by 

0, 0
dC

X
dX

= =                           (2) 

 X 1,  C 1= =  (without external mass transfer resistance)   (3) 

1, (1 )
dC

X Bi C
dX

= = −  (with external mass transfer resistance)    (4) 

where C  represents the dimensionless substrate 

concentration, X represents the dimensionless distance to 

the center or the surface of symmetry of the pellet, φ , bβ  

and Bi  represents the Thiele module, dimensionless 

parameter for bulk fluid phase and Biot number 

respectively. The g
 
characterizes the shape of the 

immobilized catalyst with g =1, 2, 3 for a slab, cylindrical, 

and spherical pellets respectively. So it can be regarded as a 

‘shape factor’ for the particle. The dimensionless variables 

are defined as follows: 

, , ,b m
b

b m m e

S VS x
C X R

S R K K D
β φ= = = = (Theile modulu

s), 1

e

K
Bi R

D
= (Biot number)                (5) 

In the above expressions, the parameters

1,, , , ande bx R K D S S
 
represent the distance to the center, 

the half-thickness of the pellet, the external mass transfer 

coefficient, the effective diffusivity of the substrate in the 

pellet, the substrate concentration inside the pellet and 

substrate concentration in the bulk fluid phase respectively.

andm mK V  are the kinetic parameters. The equation (1) also 

describes the temperature or concentration variation in many 

fields of physics, chemistry, biology, biochemistry, and many 

others [7–14]. The effectiveness factor, Ef
 
is given by  

( ) ( )
1

1

0

1
1

g
b

b

C
Ef g X dX

C
β

β
−= +

+∫                       (6) 

The initial substrate reaction rate 0v is given by 

0
0

0

m b

m b

V S
v Ef

K S
=

+
                               (7) 

where 0bS  denotes the initial substrate concentration. 

2.2. Reversible Reactions 

For reversible reactions, the governing differential 

equation for the dimensionless substrate concentration in the 

pellets is the same as Eq. 1 except the following 

dimensionless parameters. 

, , ,b m
b b eq

m m eb

S VS
C R S S S

K K DS
β φ

′
= = = = −

′ ′      (8) 

where , , andb bC Sφ β
 
represents dimensionless substrate 

concentration, the Thiele module, dimensionless parameter 

for bulk fluid phase and substrate concentration in the bulk 

fluid phase for reversible reaction. S represents the substrate 

concentration inside the pellet, eqS is the equilibrium 

substrate concentration, '
mV represents the maximum reaction 

rate and '
mK  is the Michaelis constants. The rate of change of 

substrate concentration Y  in batch reactor can be written as  

01 b

dY Y

dt Y
α

β
=

+
                                (9) 

where 

0
0 0 0

0

, , ,b m b
b b b eq

m mb

S a Ef V S
Y S S S

K KS
α β

′−
= = = = −

′ ′
 (10) 

where α  represent the ratio of the catalyst volume to the 

volume of the fluid phase reactor, ( 0.0252)a =  is the ratio 

of the catalyst volume to the volume of fluid phase in the 

reactor. The Eqn. (9) is solved with the initial condition

( 0) 1Y t = = .  

3. Analytical Expression of the 

Concentration for Irreversible and 

Reversible Reactions Using MADM  

In the recent years, much attention is devoted to the 

application of the modified Adomian decomposition method 

(MADM) to the solution of various non-linear problems in 

physical and chemical sciences. This method is used to find 

the approximate analytical solution in terms of a rapidly 
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convergent infinite power series with easily computable 

terms [17-18]. In other words, the zeroth component used in 

the standard ADM can be divided into the two functions [19-

21]. The ADM is unique in its applicability, accuracy and 

efficiency and only a few iterations are needed to find the 

asymptotic solution. The basic concept of the method is 

given in Appendix A. 

3.1. Irreversible Reaction Without External Mass Transfer 

Resistance 

Solving equation (1) using this method (see Appendix B), we 

obtain the concentration of the immobilized catalyst with g =1, 

2, 3 for a slab, cylindrical, and spherical pellets as follows: 

( ) ( )
( )

( )
2 4

2 4 2

3

1
( ) 1 1 3 10 7

2 1 60 1b b

C X X X X
g

φ φ
β β

 
 = + − + − +

+ + 
     (11) 

Effective factor Ef  for slab, cylindrical and spherical is 

( )
2

2
1

15 1 b

Ef
φ

β
= −

+
                        (12) 

Using Eqns. (7) and (12) the initial substrate reaction rate 

0v  can be obtained as follows: 

( )
2

0
0 2

0

1
15 1

m b

m bb

V S
v

K S

φ
β

 
 = −
  ++ 

                     (13) 

3.2. Irreversible Reaction with External Mass Transfer 

Resistance 

The substrate concentration with external mass transfer 

resistance for the initial and boundary conditions (Eqns. (2) 

and (4)) is obtained (see Appendix C) from Eqn. (1) as 

follows:  

( )
2 4

2 4 2

3

1 2 1 1 1 1 2 1
( ) 1 1 ( 1) 1

2 (1 ) 20 3 2 51b b

C X X X X
g Bi Bi Bi Bi

φ φ
β β

       = + − − + − − + − − −     +      +  

                    (14) 

The change in reaction rate can be expressed quantitatively 

by introducing the effectiveness factor, Ef . Using Eqn. (6), 

effective factor for slab, cylindrical and spherical is 

( )
2

2

2
1

5 1 b

Ef
φ
β

= −
+

                         (15) 

Using Eqns. (7) and (15), the initial substrate reaction rate 

0v can be obtained as follows: 

( )
2

0
0 2

0

2
1

5 1

m b

m bb

V S
v

K S

φ
β

 
 = −
  ++ 

                 (16) 

Summary of all the expression of substrate concentration 

and effectiveness factor for with and without external mass 

transfer resistance are also given in Table 1. 

Table 1. Substrate concentration and effective factor in the with and without external mass transfer resistance. 

Resistance Substrate concentration Fig. 
Effectiveness 

factors 
Fig. 

Initial 

Reaction rate 

Without 
external 

mass 

transfer 
resistance 

( ) ( )
( )

( )

2 4
2

3

4 2

1
1 1 60 1( ) 1

2
3 10 7

b b

X

C X
g

X X

φ φ
β β

 
 − +

+ += +  
 − + 
   

Eq. (11) 

Fig. 1-3 

8, 10(a) ( )
2

2
1

15 1 b

Ef
φ

β
= −

+

Eq. (12) 

Fig. 

9(a) ( )
2

0
0 2

0

1
15 1

m b

m bb

V S
v

K S

φ

β

 
 = −
  + + 

Eq. (13) 

With 

external 

mass 

transfer 

resistance 

( )
2 4

2

3

4

2

2
1

(1 ) 1

1 1 1 1 1( ) 1 ( 1)2 20 3 2

2 1
1

5

b b

X
Bi

C X Xg Bi

X
Bi Bi

φ φ
β β

  
 − − + +   +
 
   = +  − − +  
   
     − − −        

Eq. (14) 

Fig. 4-6 

9, 10(b) ( )
2

2

2
1

5 1 b

Ef
φ

β
= −

+

Eq. (15) 

Fig. 

9(b) ( )
2

0
0 2

0

2
1

5 1

m b

m bb

V S
v

K S

φ

β

 
 = −
  + + 

Eq. (16) 

 

3.3. Reversible Reaction 

By replacing the variables , and by , ,b bC Cφ β φ β in 

the Eqns. (11 -14), we can obtain the concentration of 

substrate and effective factor of reversible reaction. 

 

4. Analytical Expression of the 

Concentration of Substrate Using the 

New Approach of HPM 

The advantage of the new homotopy perturbation method 

(HPM) is that it does not need a small parameter in the 
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system [32]. Recently, many authors have used HPM for 

various problems and reported the efficiency of the HPM to 

handling nonlinear engineering problems [33-35]. Recently, a 

new approach to HPM is introduced to solve the nonlinear 

problem, in which one will get better simple approximate 

solution in the zeroth iteration [19]. In this paper, a new 

approach to the Homotopy perturbation method is applied 

(Appendix D) to solve the nonlinear differential equation (9). 

Using this method, the analytical expressions of the substrate 

concentrations can be obtained as follows: 

'

00 0

( ) exp exp
1

b m

bb b

S a Ef V
Y t t t

S S

α
β

   −
= = − =     +   

       (17) 

5. Numerical Simulation 

The non-linear differential equations (1) and (7) for the 

given initial boundary conditions are solved numerically 

using the Matlab program [36]. The numerical values of 

parameters used in this work are given in Table 2 and Table 

3. Its numerical solution is compared with our analytical 

results in Tables (3) – (5) and it gives satisfactory agreement. 

In all the case, the average relative error is less than 1.3%. 

The Matlab program is also given in Appendix-E and F. 

Table 2. Summarized description of the immobilized enzyme systems investigated [24]. 

Case no. 1 2 3 4 

Enzyme Amyloglucocidase Amyloglucocidase Gulcoseisomerase Sweetzyme Q 

Support Honey ceramic slab 
Porous spherical 

Glass beads 

Porous spherical 

Glass beads 

spherical 

beads 

reaction irreversible Irreversible reversible reversible 

substrate Soluble starch Dextrin Glucose Glucose 

Product Glucose Glucose Fructose Fructose 

Reactor Stirred batch reactor 
Recycling differential batch 

reactor 
Recycling differential batch reactor Stirred batch reactor 

2( / )eD cm s  3.67 x 10-8 5.30 x 10-7 1.36 x 10-6 8.33 x 10-7 

1 ( / )k cm s  negligible Negligible 9.52 x 10-3 negligible 

R (m) 1.6 x 10-4 1.6 x 10-4 1.6 x 10-4 3.2 x 10-5 

mK 3( / )kg m  0.258 0.25042 - - 

mV 3( / / )kg s m cat  2.51 x 10-2   0.4429 - - 

( )mfK M  - - 0.211 0.452 

( / min/ )m fV mol lcat  - - 0.1453 x10-3 0.142 

( )mrK M  - - 0.389 - 

( / min/ )mrV mol lcat  - - 2.783 x10-3 - 

Figure 10 
See in the subblimendary 

material 
See in the subblimendary material 

See in the 

subblimendary material  

References [39] [18] [40] [8] 

Table 3. Numerical values of the parameter using this work. 

Parameter Case 1 Case 2 Case 3 Case 4 

Thiele Module 
/ ( )m m eR V K Dφ =  

Forward Backward Forward 

/ ( )m m eR V K Dφ =
 

/ ( )m m eR V K Dφ =
 

/ ( )m m eR V K Dφ =
 

0.2605 2.1092 0.0035 0.0035 0.0197 

Dimensionless parameter 

in reaction for bulk fluid 

phase 

/b b mS Kβ =  '/b b mfS Kβ =  '/b b mrS Kβ =  
'/b b mfS Kβ =  

337.054 56.65 412.132 223.54 192.38 

Effectiveness factor 

( )
2

2
1

15 1 b

Ef
φ

β
= −

+
 0.99 0.99 1 0.99 0.99 
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Table 4. Comparison of dimensionless substrate concentration C (without mass transfer resistance) with numerical result for various values of and bφ β .
 

(a) Spherical particle 

g X 
5φ =  10φ =  

bβ  Our Work Eqn. (11) Numerical % Error bβ  Our Work Eqn. (11) Numerical % Error 

3 

0.0 2 0.161 0.163 1.22 15 0.105 0.107 1.86 

0.2 5 0.406 0.413 1.69 20 0.277 0.282 1.77 

0.4 7 0.581 0.581 0 25 0.470 0.470 0 

0.6 10 0.762 0.762 0 50 0.791 0.791 0 

0.8 15 0.907 0.907 0 100 0.940 0.940 0 

1.0 10 1.000 1.000 0 500 1.000 1.000 0 

 Average deviation 0.582 Average deviation 0.728 

 

g X 
1bβ =  5bβ =  

φ  Our Work Eqn. (11) Numerical % Error φ  Our Work Eqn. (11) Numerical % Error 

3 

0.0 4 0.282 0.288 2.08 6 0.211 0.215 1.86 

0.2 3 0.463 0.465 0.43 5 0.413 0.416 0.72 

0.4 2.5 0.636 0.636 0 4 0.644 0.644 0 

0.6 2 0.807 0.807 0 3 0.843 0.843 0 

0.8 1.5 0.935 0.935 0 2 0.960 0.960 0 

1.0 0.1 1.000 1.000 0 1 1.000 1.000 0 

 Average deviation 0.502 Average deviation 0.516 

(b) cylinder particle 

g X 
2φ =  10φ =  

bβ  Our Work Eqn. (11) Numerical % Error bβ  Our Work Eqn. (11) Numerical % Error 

2 

0.0 0.1 0.440 0.455 2.220 25 0.055 0.130 2.31 

0.2 1 0.575 0.598 3.380 35 0.349 0.353 1.69 

0.4 2 0.733 0.744 1.350 50 0.589 0.592 0 

0.6 5 0.894 0.895 0 75 0.790 0.790 0 

0.8 10 0.967 0.967 0 100 0.910 0.911 0 

1.0 50 1.000 1.000 0 300 1.000 1.000 0 

 Average deviation 1.38 Average deviation 0.8 

 

g X 
1bβ =  5bβ =  

φ  Our Work Eqn. (11) Numerical % Error φ  Our Work Eqn. (11) Numerical % Error 

2 

0.0 3 0.300 0.306 1.96 5 0.202 0.206 1.94 

0.2 2.5 0.454 0.458 0.87 4 0.432 0.438 1.36 

0.4 2 0.655 0.655 0 3.5 0.587 0.587 0 

0.6 1.5 0.829 0.829 0 3 0.765 0.765 0 

0.8 1 0.955 0.956 0 2 0.940 0.940 0 

1.0 0.1 1.000 1.000 0 1 1.000 1.000 0 

 Average deviation 0.566 Average deviation 0.66 

(c) Slab particle 

g X 
1.5φ =  5φ =  

bβ  Our Work Eqn. (11) Numerical % Error bβ  Our Work Eqn. (11) Numerical % Error 

1 

0.0 1 0.554 0.564 1.773 20 0.428 0.431 0.696 

0.2 2 0.670 0.681 1.615 25 0.540 0.549 1.630 

0.4 3 0.767 0.770 0.518 30 0.662 0.662 0 

0.6 5 0.880 0.883 0 50 0.843 0.843 0 

0.8 10 0.963 0.963 0 100 0.955 0.955 0 

1.0 15 1.000 1.000 0 500 1.000 1.000 0 

 Average deviation 0.78 Average deviation 0.465 
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g X 
1bβ =  5bβ =  

φ  Our Work Eqn. (11) Numerical % Error φ  Our Work Eqn. (11) Numerical % Error 

1 

0.0 1.5 0.554 0.564 1.77 3 0.271 0.373 2.70 

0.2 1.4 0.596 0.607 1.90 2.5 0.509 0.519 1.96 

0.4 1.2 0.705 0.709 0.50 2 0.723 0.735 1.36 

0.6 1 0.843 0.853 1.76 1.5 0.880 0.880 0 

0.8 0.7 0.956 0.956 0 1.2 0.956 0.956 0 

1.0 0.01 1.000 1.000 0 0.1 1.000 1.000 0 

 Average deviation 1.18 Average deviation 1.20 

Table 5. Comparison of dimensionless substrate concentration C (with mass transfer resistance) with numerical results for various values of , , andb iBφ β .
 

(a) Slab Particle 

g X 
1, 5Biφ = =  1, 1bφ β= =  

bβ
 

Our Work Eqn. (13) Numerical % Error Bi  Our Work Eqn. (13) Numerical % Error 

1 

0.0 1 0.764 0.765 0.13 5 0.752 0.761 1.31 

0.2 1.5 0.754 0.755 1.43 5.5 0.809 0.813 1.23 

0.4 2.5 0.835 0.835 0 6 0.845 0.845 0 

0.6 5 0.913 0.913 0 7 0.897 0.897 0 

0.8 10 0.965 0.965 0 8 0.957 0.957 0 

1.0 15 0.987 0.987 0 15 0.993 0.993 0 

Average deviation 0.312 Average deviation 0.508 

(b) Cylinder Particle 

g X 
1, 0.5Biφ = =  1, 2bφ β= =  

bβ
 

Our Work Eqn. (13) Numerical % Error Bi  Our Work Eqn. (13) Numerical % Error 

2 

0.0 2 0.637 0.6414 1.24 0.5 0.640 0.641 0.15 

0.2 3 0.704 0.715 .071 0.75 0.725 0.727 0.27 

0.4 4 0.765 0.765 0 1 0.784 0.784 0 

0.6 6 0.836 0.836 0 2 0.867 0.867 0 

0.8 10 0.901 0.901 0 5 0.937 0.937 0 

1.0 15 0.937 0.937 0 10 0.983 0.983 0 

Average deviation 0.26 Average deviation 0.084 

(c) Spherical Particle 

g X 
1, 1Biφ = =  1, 1bφ β= =  

bβ
 

Our Work Eqn. (13) Numerical % Error Bi  Our Work Eqn. (13) Numerical % Error 

3 

0.0 0.1 0.661 0.664 0.45 0.5 0.650 0.658 1.21 

0.2 0.5 0.721 0.726 0.69 1 0.775 0.778 0.38 

0.4 1 0.787 0.787 0 1.5 0.832 0.832 0 

0.6 2 0.859 0.859 0 2 0.871 0.871 0 

0.8 10 0.964 0.964 0 5 0.938 0.938 0 

1.0 100 0.996 0.996 0 20 0.991 0.991 0 

Average deviation 0.228 Average deviation 0.318 

 

6. Result and Discussion 

Eqns. (11-12) and (14-15) represent the analytical 

expression for the dimensionless substrate concentration 

( )C X  and effectiveness factor Ef  for both reversible and 

irreversible reactions without and with mass transfer 

resistance for slab, cylinder and spherical pellets respectively. 

The substrate concentration C against the dimensionless 

radial distance X  for the both reversible and irreversible 

reactions is plotted in Figs. 2 – 7 for various values of the 

Thiele modulus and bφ β for the three shapes. When the 

Thiele modulus or Half – thickness of the pellet ( )R  

increases, the substrate concentration inside catalyst will also 

decrease in all the cases.  

Figs. 2 (a) - 4 (a) represents that the substrate concentration 

C  versus distance X  for various values of and bφ β  without 

external mass transfer resistance. The substrate concentration 

increases with increasing bβ  or increasing irreversible 

substrate concentration in the bulk fluid phase ( )bS  and 

decreasing the irreversible reaction Michaelis constant ( )mK . 

From these figures, it is obvious that the substrate 

concentration reaches a uniform value when the Thiele 

modulus 0.01φ ≤
 
and 200bβ > . Figs. 2 (b) – 4 (b) shows 

that, the substrate concentration decreases with increasing the 

Thiele modulus φ  or
 
increasing Half – thickness of the pellet 

( )R  and irreversible maximum reaction rate ( )mV . 
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(a). 1.5φ =  and 1 to 50bβ =  (b). 5bβ =  and 0.1 to 3φ =  

Figure 2. Plot the dimensionless substrate concentration C  versus dimensionless distance X , in the slab pellet calculated using Eqn. (11).  

 

(a) 10φ =  and 25 to 300bβ =  (b). 1bβ =  and 0.1to3φ =  

Figure 3. Plot the dimensionless substrate concentration C versus dimensionless distance X , in the cylinder pellet calculated using Eqn. (11). 

 

(a). 5φ =  and 2 to 100bβ =  (b). 1bβ =  and 0.1to 4φ =  

Figure 4. Plot the dimensionless substrate concentration C versus dimensionless distance X , in the spherical pellet calculated using Eqn. (11). 
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From Figs. (5-7) it is inferred that substrate concentration increases with the increasing Biot number ( )iB  and Michaelis-

Menten constant ( )bβ . The dimensionless substrate concentrations for the three pellets are plotted in Figs. (8). From these 

figures, it is concluded that the dimensionless substrate concentration for the spherical pellets is greater than slab and 

cylindrical pellets. 

 

(a). 1 , 1bφ β= =  and 1 to 15Bi =  (b). 1, 5Biφ = = and 1 to 10bβ =  

Figure 5. Plot the dimensionless substrate concentration C  versus dimensionless distance X , in the slab pellet calculated using Eqn. (14). 
 

 

(a). 1 , 2bφ β= =  and 0.5 to 5Bi =  (b). 1, 0.5Biφ = =  and 2 to 10bβ =  

Figure 6. Plot the dimensionless substrate concentration C versus dimensionless distance X , in the cylinder pellet calculated using Eqn. (14). 

 

(a). 1 , 1bφ β= =  and 0.5 to 20Bi =  (b). 1, 1Biφ = =
 
and 0.1 to100 .bβ =  

Figure 7. Plot the dimensionless substrate concentration C  versus dimensionless distance X , in the spherical pellet calculated using Eqn. (14).  
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Figure 8. Plot of dimensionless substrate concentration C versus the dimensionless distance X  for the slab, cylindrical, spherical pellets (a) without mass-

transfer resistance (Eqns. (11)), (b) with mass transfer resistance (Eqn. (14)). 

Plot of effectiveness factor Ef against Thiele modulus φ  and Michaelis - Menten constant bβ
 
is shown in Fig. 9 (a - b). 

Effectiveness factor is a dimensionless pellet production rate that measures how effectively the catalyst is being used. For η 

near unity, the entire volume of the pellet is reacting at the same high rate because the reactant is able to diffuse quickly 

through the pellet. For η near zero, the pellet reacts at low rate. The reactant is unable to penetrate significantly into the interior 

of the pellet and the reaction rate is small in a large portion of the pellet volume. The effectiveness factor decreases from its 

initial value, when the diffusional restriction or bβ
 
increases. The effectiveness factor is maximum ( 1)Ef ≈

 
at lower values of 

and bφ β . For all the cases, 1Ef ≈ .  

 

 

(i) (a-b) Without mass transfer resistance using ( Eqn. (12)), (ii) (a-b) With mass transfer resistance using (Eqn. (15)). 

Figure 9. The general effectiveness factor Ef against Thiele modulus φ and Michaelis-Menten constant bβ . 
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Now the Eqn. (7) can be written as follows 0 0 0/ ( / ) ( / )b m m b mS v K V S V= + . The plot of Fig. 10 represents 0 0/bS v versus 

irreversible initial substrate concentration in the bulk fluid phase 0bS  gives the slope = 1/ mV  and the intercept= /m mK V . The 

parameters andm mK V
 
are obtained from the above slope and intercept results. Good agreement between predicted and 

experimental data is observed at low initial substrate concentrations.  

 

(a). Hanes-Woolf plot (b). Line weaver- Burk plot 

Figure 10. Comparison of our analytical result (Eqn. (13)) initial substrate reaction rate with the numerical result [24] and experimental data [24] (Refer 

Table 3) for case 1. 

Our analytical expression (Eqn. (17)) for the concentration of substrate 0( ( ) )b bS Y t S=  is compared with the experimental 

results in Fig. (11). Good agreement with the experimental data is noted. From this figure, it is inferred that reversible substrate 

concentration bS
 
is almost uniform when the initial bulk substrate concentration 0bS  is constant. The substrate concentration 

in the fluid phase bS
 
increases when the initial bulk substrate concentration 0bS  increases.  

 

Figure 11. Comparison of our analytical result (Eqn. (17)) for substrate concentration with the numerical result [24] and experimental data [24] for the time 

courses of substrate consumption in a batch reactor model (Refer Table 3). 

7. Conclusions 

In this paper an approximate analytical solutions of the 

nonlinear initial boundary value problem in Michaelis- 

Menten kinetics have been derived. The modified Adomian 

decomposition method (MADM) is used to obtain the 

solutions for the non-linear model of an immobilized 

biocatalyst enzyme. Approximate analytical expressions for 

the concentration of substrate and the effective factor in 

immobilized biocatalyst enzymes are derived. The analytical 

solutions agree with the experimental results and numerical 

solutions (Matlab program) with and without external mass 

resistance for a slab, cylindrical and spherical pellets. These 
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analytical results are more descriptive and easy to visualize 

and optimize the kinetic parameters of immobilized enzymes.  

Appendix A: Basic Concept of Modified 

Adomian Decomposition Method 

Consider the singular boundary value problem of 1n +  

order nonlinear differential equation in the form 

( ) ( )

( ) ( )

1

1
0 1 1

( ),

(0) ,  (0) ,. . . , 0 ,

n n

n
n

m
y y N y g x

x

y a y a y a y b c

+

−
−

+ + =

′= = = =
  (A.1) 

Where N is a non-linear differential operator of order less 

than n , ( )g x  is given, function and 0 1 1, ,... , ,na a a c b− are 

given constants. We propose the new differential operator, as 

below 

( )1 1 .
n

n m m n

n

d d
L x x x

dxdx

− + − −=               (A.2) 

Where , 1m n n≤ ≥ , so, the problem can be written as 

( ) ( )1 .L g x Ny− = −                      (A.3) 

The inverse operator 
1L−

is therefore considered a 1n +  

fold integral operator, as below 

( ) ( )1 1

0 0 0

. .... . ... .

x x x x

n m m n

b

L x x x dx dx− − − −= ∫ ∫ ∫ ∫             (A.4) 

By applying 
1L−

on (A.3), we have 

( ) ( ) ( )1 1y x x L g x L Nyϕ − −= +         (A.5) 

Such that ( ) 0L xϕ =  

The Adomian decomposition method introduces the 

solution ( )y x and the nonlinear function Ny by infinite 

series  

( ) ( )
0

n

n

y x y x

∞

=

=∑                          (A.6) 

and 

0

n

n

Ny A

∞

=

=∑                              (A.7) 

where the components ( )ny x  of the solution ( )y x will be 

determined recurrently. Specific algorithms were seen in [8, 

12] to formulate Adomian polynomials. The following 

algorithm: 

( )0 ,A F u=
 

( )1 0 1,A F u u=
 

( ) ( )'' 2
2 0 2 0 1

1
,

2
A F u u F u u= +

 

( ) ( )'' 2
2 0 2 0 1

1
,

2
A F u u F u u= +

 

( ) ( )'' 2
2 0 2 0 1

1
,

2
A F u u F u u= +

 

( ) ( ) ( )'' ''' 3
3 0 3 0 1 2 0 1

1 1
, ,

2 3!
A F u u F u u u F u u= + +   (A.8) 

can be used constant Adomian polynomials, when ( )F u  

is a nonlinear function. By substituting (A. 6) and (A. 7) into 

(A. 5) 

( ) ( )1 1

0 0

n n

n n

y x L g x L Aϕ
∞ ∞

− −

= =

= + −∑ ∑           (A.9) 

Through using the modified Adomian decomposition 

method, the components ( )ny x can be determined as 

1
0

1
1

( ) ( )

( ) ( ),  0n n

y x A L g x

y x L A n

−

−
+

= +

= − ≥
             (A.10) 

which gives 

1
0

1
1 0

1
2 1

1
3 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

          ...

y x A L g x

y x L A

y x L A

y x L A

−

−

−

−

= +

= −

= −

= −

                 (A.11) 

From (A.8) and (A.11), we can determine the components

( )ny x , and hence the series solution of ( )y x  in (A.6) can be 

immediately obtained. For numerical purposes, the n- term 

approximate 

1

0

n

n k

n

yψ
−

=

=∑                       (A.12) 

can be used to approximate, the exact solution. The approach 

presented above can be validated by testing it on a variety of 

several linear and nonlinear initial value problems. 

Appendix B: Analytical Solution of 

Substrate Concentration Without 

External Mass Transfer Resistance 

The solutions of Eq. (1) for 3g = allow us to predict the 

concentration profiles of dimensionless substrate 

concentration in immobilized enzymes. In order to solve Eq. 
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(1), using the modified Adomian decomposition method, Eq. 

(1) can be written with the operator form 

2
0

01 b

C
Ls

C

φ
β

 
=   + 

                  (B.1) 

where
2

2

d
L

dx
= , Applying the inverse operator 

1L−
 on both 

sides of Eq. (B. 1) yields 

( )
2

0

01 b

C
C x Ax B

C

φ
β

 
= + +   + 

                  (B.2) 

Where A and B are the constants of integration. We let, 

( )
0

n

n

C x C

∞

=

=∑                           (B.3) 

( )
0

n

n

N C x A

∞

=

  =  ∑                      (B.4) 

Where 

( )
2

0

01 b

C
N C x

C

φ
β

 
  =     + 

                (B.5) 

From the eqns (B. 3), (B. 4) and (B. 5), Eq. (B. 2) gives 

( )
2

0

00
1

n
bn

C
C x Ax B

C

φ
β

∞

=

 
= + +   + 

∑            (B.6) 

We identify the zeroth component as 

0 ( )C x AX B= +                        (B.7) 

And the remaining components as the recurrence relation 

2 1
1 ; 0n nC L A nφ −

+ = ≥                (B.8) 

where nA  are the Adomian polynomials of 0, 1, ... , nC C C . 

We can find the first few nA  as follows: 

Apply the boundary conditions in (B. 1) we get, 

0 1C =                                   (B.9) 

Again to find 1C  

2
1 0

1
01 b

C
C L

C

φ
β

−  
=   + 

                       (B.10) 

Using (B. 9) in (B. 10), 

2
1

1
1 b

C L
φ

β
−  

=   + 
                        (B.11) 

Again using this formula to find 1C , 

2
1

1

0 0
1

X X

b

C X X dXdX
φ

β
−  

=   + 
∫ ∫                       (B.12) 

Integrating Eqn. (B. 12),  

2 2
1

1
1 6b

X
C A BX

φ
β

−  
= + +    +  

                      (B.13) 

Where A and B are integrating constants. Again using 

boundary conditions Eqn. (B. 13) becomes, 

( ) ( )
2

2
1 1

6 1 b

C X
φ

β
= −

+                                (B.14) 

Now, consider 

( )1
2 0 1

0

1

1!

d
C L N C C

d λ
λ

λ
−

=

 = + 
 

             (B.15) 

Solving ( )0 1

0

1

1!

d
N C C

d λ
λ

λ =

 + 
 

we get, 

( )
( )

4
1 2

2 3
1

6 1 b

C L X
φ

β
−
 
 = −
 + 

                 (B.16) 

Therefore,  

( )
( )

4
1 2

2 3
1

6 1 b

C X X X dXdX
φ

β
−

 
 = −
 + 

∫∫              (B.17) 

Integrating Eqn. (B. 17), 

( )
4 4 3

1
2 3 120 361 b

X X
C C DX

φ
β

−
  
 = − + +   +   

        (B.18) 

Where C and D are integrating constants. Apply boundary 

conditions we get the value for C and D, 

Therefore Eqn. (B. 17) in the form, 

( )
( )

4
4 2

2 3
3 10 7

360 1 b

C X X
φ

β
= − +

+
           (B.19) 

Adding the Eqns. (B. 9), (B. 14) and (B. 19) we get the 

solution Eqn. (7). Similarly, to apply the above method for 

1, 2g g= = to find the solution. 

Appendix C: Analytical Solution of 

Substrate Concentration with External 

Mass Transfer Resistance 

The solutions of Eq. (1) for 3g = allow us to predict the 

concentration profiles of dimensionless substrate 

concentration in immobilized enzymes. In order to solve Eq. 
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(1), using the modified Adomian decomposition method, Eq. 

(1) can be written with the operator form 

2
0

01 b

C
Ls

C

φ
β

 
=   + 

                        (C.1) 

Where 
2

2

d
L

dx
= , Applying the inverse operator 

1L−
 on 

both sides of Eq. (C.1) yields 

( )
2

0

01 b

C
C x Ax B

C

φ
β

 
= + +   + 

                     (C.2) 

Where A and B are the constants of integration. We let, 

( )
0

n

n

C x C

∞

=

=∑                                  (C.3) 

( )
0

n

n

N C x A

∞

=

  =  ∑                                (C.4) 

Where  

( )
2

0

01 b

C
N C x

C

φ
β

 
  =     + 

                      (C.5) 

From the eqns (C.3), (C.4) and (C.5), Eq. (C.2) gives 

( )
2

0

00
1

n
bn

C
C x Ax B

C

φ
β

∞

=

 
= + +   + 

∑               (C.6) 

We identify the zeroth component as 

0 ( )C x AX B= +                                    (C.7) 

And the remaining components as the recurrence relation 

2 1
1 ; 0n nC L A nφ −

+ = ≥                                  (C.8) 

where nA  are the Adomian polynomials of 0, 1, ... , nC C C . 

We can find the first few nA  as follows: 

C AX B= +                                  (C.9) 

Apply the boundary conditions in (C. 9) we get, 

0 1C =                                        (C.10) 

Again to find 1C  

2
1 0

1
01 b

C
C L

C

φ
β

−  
=   + 

                            (C.11) 

Using (C. 10) in (C. 11), 

2
1

1
1 b

C L
φ

β
−  

=   + 
                            (C.12) 

Again using this formula to find 1C , 

2
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1

0 0
1

X X

b

C X X dXdX
φ

β
−  

=   + 
∫ ∫                 (C.13) 

Integrating Eqn. (C. 13), 

2 2
1

1
1 6b

X
C A BX

φ
β

−  
= + +    +  

          

 

(C.14) 

Where A and B are integrating constants. Again, using 

boundary conditions Eqn. (C. 14) becomes, 

2 2
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1 1
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Now, consider  
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Solving ( )0 1

0
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d
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d λ
λ

λ =

 + 
 

we get, 
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Therefore, 
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(C.18) 

Integrating Eqn. (C. 18), 

( )
4 4 2

1
2 3

1 1
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X X
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Bi

φ
β

−
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   (C.19) 

Where C and D are integrating constants. Apply boundary 

conditions we get the value for C and D, 

Therefore Eqn. (C. 11) in the form, 

( )
4 2

4
2 3

1 1 1 1 1 1
( 1)

120 3 6 6 6 3 301 b

X
C X

Bi Bi Bi

φ
β
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  (C.20) 

Adding the Eqns. (C. 10), (C. 15) and (C. 20) we get the 

solution Eqn. (13). Similarly, to apply the above method for 

1, 2g g= =  to find the solutions. 

 



 Applied and Computational Mathematics 2017; 6(3): 143-160 157 

 

Appendix D1: Scilab Program for the 

Numerical Solution of Equation (11) 

function pdex4 

m = 0; 

x=linspace(0, 1); 

t = linspace(0, 10000000); 

sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t); 

u1 = sol(:, :, 1); 

%————————————————————– 

figure 

plot(x, u1(end, :)) 

title('u1(x, t)') 

xlabel('Distance x') 

ylabel('u1(x, 1)') 

function [c, f, s] = pdex4pde(x, t, u, DuDx); 

c=1; 

f =1.* DuDx; 

a=6; b=5; 

F =-((a^2*u(1))/((1+b*u(1)))); 

s =F; 

% ————————————————————– 

function u0 = pdex4ic(x); 

u0 = [0]; 

% ————————————————————– 

function [pl, ql, pr, qr] = pdex4bc(xl, ul, xr, ur, t)  

pl = [0]; 

ql = [1]; 

pr = [ur(1)-1]; 

qr = [0]; 

Appendix D2: Scilab Program for the 

Numerical Solution of Equation (13) 

function pdex4 

m = 0; 

x = linspace(0, 1); 

t = linspace(0, 1000000); 

sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t); 

u1 = sol(:, :, 1); 

% ————————————————————– 

figure 

plot(x, u1(end,:)) 

title('u1(x, t)') 

xlabel('Distance x') 

ylabel('u1(x, 1)') 

function [c, f, s] = pdex4pde(x, t, u, DuDx) 

c =1; 

f =1.* DuDx; 

e=1; alpha=5; 

F =-(e*u(1))/((1+(alpha*u(1)))); 

s =F; 

% ————————————————————– 

function u0 = pdex4ic(x)  

u0 = [0]; 

% ————————————————————– 

function [pl, ql, pr, qr] = pdex4bc(xl, ul, xr, ur, t)  

B=1; 

pl = [0]; 

ql = [1]; 

pr = [-B*(1-ur(1))]; 

qr = [1]; 

 

(i). Michaelis-Menten constant bβ , (ii). Thiele modulus φ .  

Figure 12. Plot of the three-dimensional dimensionless concentration C against the dimensionless distance X for the three pellets calculated using Eqn. (11) 

(without mass-transfer resistance). 
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(i). Michaelis-Menten constant bβ , (ii). Thiele modulus φ  

Figure 13. Plot of the three-dimensional dimensionless concentration C against the dimensionless distance X for the three pellets calculated using Eqn. (14) 

(with mass-transfer resistance). 

 

Figure 14. Hanes-Woolf plot for case 2 in the absence of mass transfer limitations (dotted line), model predictions with constant diffusivity (dot-dashed line), 

model predictions with concentration-dependent diffusivity (dashed line), experimental data (symbols), and analytical result (solid line). 

 

Figure 15. Line weaver-Burk plot for case 2; model predictions using the optimized parameters (dotted line), experimental data (symbols) and analytical 

result (solid line). 
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Figure 16. Line weaver-Burk plot for the forward reaction of case 3; model predictions using the optimized parameters (dotted line), experimental data 

(symbols) and analytical result (solid line). 

 

Figure 17. Line weaver-Burk plot for the forward reaction of case 4; model predictions using the optimized parameters (dotted line), experimental data 

(symbols) and analytical result (solid line). 
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