

Applied and Computational Mathematics
2017; 6(2): 88-92
http://www.sciencepublishinggroup.com/j/acm
doi: 10.11648/j.acm.20170602.14
ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

Special Case Algorithm for N-jobs M-machines Flow Shop
Scheduling Problems

Geleta Tadele Mohammed

Department of Mathematics, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia

Email address:

geletatadele@gmail.com, geleta.tadele@amu.edu.et

To cite this article:
Geleta Tadele Mohammed. Special Case Algorithm for N-jobs M-machines Flow Shop Scheduling Problems. Applied and Computational

Mathematics. Vol. 6, No. 2, 2017, pp. 88-92. doi: 10.11648/j.acm.20170602.14

Received: February 10, 2016; Accepted: December 29, 2016; Published: April 7, 2017

Abstract: In this paper we have developed an algorithm for n-jobs with m-machine flow shop scheduling problems in order
to handle variety of data type than Geleta [3]. In other hands, as in Geleta [3] it main objective is how to obtain optimal
sequence of jobs with aim of minimum squared value of lateness.

Keywords: N-jobs M-machine Flow Shop Scheduling Problems, Squared Lateness,
Completion Time and Processing Time Multiple

1. Introduction

We extended the work of change [1], Ikram [2] and Geleta
[3] to special class of n-jobs m-machine scheduling problems
it to handle other data type. The algorithm seems the same
with that of Geleta’s but it is shifted accordingly to other data
type. Still it does not work for all types of data.

As in Geleta [3],throughout this paper,��� represents the
processing time of job � on machine ���� the order of
machines is fixed and it is�	 → �� → �� → ⋯ → �(��) →��,with the completion time of job done on��� position place
is given by

�� = �∑ �	����	 � + ��� + ��� +⋯+ ���, for �=1: n (1)

Problem formulation and assumption

In addition to the assumption of Geleta [3], I want to have
only the following:

���	{�	�	} ≤ ���{���} (2a)	
���{���} ≤ ���{���} (2b)	
���	{���	} 	≤ ���{�!�} (2c)

.

.

.	

���	{�(��)� 	} 	≤ ���{���}	 (2d)

And if �	" < �	$, then the following conditions holds
true:

�	"��$ ≤ �	$��" (3a)

�	"��$ ≤ �	$��" (3b)

�	"�!$ ≤ �	$�!" (3c)

.

.

.

�	"��$ ≤ �	$��" (3d)

Since all jobs spend more amount of time on the last
machine, then ��= k��� , � = 1:	�, where (is processing time
multiple. This is because of the condition (2a) to (2d).

Let) denotes an arbitrary sequence, and *�+ represents
jobs occupying ��� position of) . If ,*�+, �*�+	���	�*�+
represents lateness, completion time and assigned due date of
the job in the ���, then our objective function is to minimize

,�=∑ ,�*�+-��	 =∑ (�*�+ − �*�+)�-��	 (4)

Since the completion time of the ��� for any sequence) is: �*�+ = �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ , for � =1: n

89 Geleta Tadele Mohammed: Special Case Algorithm for N-jobs M-machines Flow Shop Scheduling Problems

and by using�*�+= k�*	�+, � = 1:	�equation (4) becomes:

,�=∑ �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ − k�*	�++�-��	 (5)

This is a function of k and that have to be minimized.

By exactly the same procedure as in Geleta [13], we have
the following optimal processing time multiple	k∗ andoptimal
due date:

	k∗=∑ 1*23+4352 ∑ 1*26+3652 7∑ 1*23+4352 1837∑ 1*23+4352 1*93+7∑ 1*23+4352 1*:3+7...7	∑ 1*23+4352 1*<3+∑ *1*23++84352 (6a)

Hence, by using the value of 	k∗we assign the value of due
dates of each to be

�*�+= 	k∗�*��+, � = 1:	� (6b)

Theorem (Minimization of ,� under a certain condition):

Our objective function ,� = ∑ �∑ �*	�+���	 � + �*��+ +-��	�*��+ +⋯+ �*��+ − k�*	�++� can be minimized by applying
the rule that job x should be done before job y if the
following conditions are satisfied:

�	" < �	$ (6c)

�	"��$ ≤ �	$��" (6d)

�	"��$ ≤ �	$��" (6e)

�	"�!$ ≤ �	$�!" (6f)

.

.

.

�	"��$ ≤ �	$��" (6g)

Proof:

Since , ,� = ∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+-��	�*��+ − k�*	�++�, the extending this expression we can obtain
that

,� ==>*?=�*	�+�
��	 @ + �*��+ + �*��+ +⋯+ �*��++� + �k�*	�+�� − 	2k�*	�+B?=�*	�+�

��	 @ + �*��+ + �*��+ +⋯+ �*��+CD-
��	

By having re-arrangement of summation inside the bracket we have,

,�=∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	 +∑ �k�*	�+�� − 2(-��	 ∑ ��*	�+E�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+F�-��	 (7)

From the third term of Equation (7), we obtain: ∑ ��*	�+E�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+F�-��	 = ∑ �*	�+ ∑ �*	�+ +���	-��	 ∑ �*	�+-��	 ���+∑ �*	�+-��	 �*��++∑ �*	�+-��	 �*!�++... +∑ �*	�+-��	 �*��+, which is constant and
independent of the sequence of the jobs change [1].

And also, the middle term ∑ �k�*	�+��-��	 is constant (because of it is the sum of square quantity) and independent of
sequence of the jobs.

Now, the remaining thing to prove is that ∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	 can be minimized by applying the
conditions given above in the theorem?

The answer is yes!
Let)	 be a sequence of jobs in which job x and y are arranged in a position k and k+1 respectively, and)� be a sequence of

the jobs in which job x and y are arranged in apposition of k+1 and k respectively.

Let G	()) =∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	 (8)

And

G	()�) =∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	 (9)

Now, by expanding equation (9), we obtain

G	()) =��*		+ + �*�	+ + �*�	+ +⋯+ �*�	+�� + ��*		++�*	�+ + �*��+ + �*��+ +⋯+ �*��+��+��*		++�*	�++�*	�+ + �*��+ +�*��+ +⋯+ �*��+��+��*		++�*	�++�*	�++�*	!+ + �*�!+ + �*�!+ +⋯+ �*�!+��+... +��*		++�*	�++�*	�++�*	!+ +⋯+�*	(H�)++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	"+ + �*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H7�)+ + �*�(H7�)+ + �*�(H7�)+ +⋯+ �*�(H7�)+��+...

+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	-+ + �*�-+ + �*�-+ +⋯+ �*�-+�� (10)

 Applied and Computational Mathematics 2017; 6(2): 88-92 90

G	()�) =��*		+ + �*�	+ + �*�	+ +⋯+ �*�	+�� + ��*		++�*	�+ + �*��+ + �*��+ +⋯+ �*��+��+��*		++�*	�++�*	�+ + �*��+ + �*��+ +⋯+�*��+��+��*		++�*	�++�*	�++�*	!+ + �*�!+ + �*�!+ +⋯+ �*�!+��+... +��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)+ + �*�(H�)+ +�*�(H�)+ +⋯+ �*�(H�)+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	$+ + �*�$+ + �*�$+ +⋯+�*�$+��+��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+��+��*		++�*	�++�*	�+ +⋯+�*	(H7�)+ +�*�(H7�)+ + �*�(H7�)+ +⋯+ �*�(H7�)��+... +��*		++�*	�++�*	�++�*	!+ +⋯+ �*	-+ + �*�-+ + �*�-+ +⋯+ �*�-+��(11)

Now,G()) − G	()�) = ��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+�2 +

��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	"++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+��

−��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+�
−��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+�� (12)

Then by simplifying equation (12) we get

G()) − G	()�)
=�*	"+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)++�*	"++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+� −	�*	$+��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+�

=�*	"+�*		++�*	"+�*	�++�*	"+�*	�++…+�*	"+�*	(H�)++�*	"+�*	"++�*	"+�*	$++�*	"+�*�$++�*	"+�*�$++…+�*	"+�*�$+ −�*	$+�*		+��*	$+�*	�+ − �*	$+�*	�+ − �*	$+�*	!+ − �*	$+�*	(H�)+ − �*	$+�*	"+ − �*	$+�*�"+ − �*	$+�*�"+ − �*	$+�*!"+ −⋯−�*	$+�*�"+
=��*	"+�� − ��*	$+�� + E�*	"+ − �*	$+F��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)+� + ��*	"+�*	$+ + �*	"+�*�$+ + �*	"+�*�$+ +�*	"+�*!$+ +⋯+ �*	"+�*�$+ − �*	$+�*	"+ − �*	$+�*�"+ − �*	$+�*�"+ − �*	$+�*!"+ −⋯− �*	$+�*�"+�

=��*	"+�� − ��*	$+�� + E�*	"+ − �*	$+F��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�)+� + *�*	"+�*	$+ − �*	$+�*	"++ + *�*	"+�*�$+ −�*	$+�*�"++ + *�*	"+�*�$+ − �*	$+�*�"++ + *�*	"+�*!$+ − �*	$+�*!"++ + ⋯+ *�*	"+�*�$+ − �*	$+�*�"++
Now, if �	" < �	$

�	"��$ 	≤ �	$��"

�	"��$ 	≤ �	$��"

�	"�!$ 	≤ �	$�!"

.

.

.

�	"��$ 	≤ �	$��",

Then, G()) < G	()�).
Thus, the interchanging of job � and I reduces the value of ,�. Hence, job � should be done before job I. Therefore, the

conditions stated in the above theorem are satisfied.Now, by
repeatedly applying the above rule,,�can be minimized by
arranging jobs depending on their processing time on the first
machine as S.P.T rule.

2. Algorithms to Get Optimal Sequence

Step 1: Verify that the conditions given from (2a)-(2d) and
(3a) – (3d). If a1l of these conditions holds true proceed to
the next step. Else stop.

Step 2: Determine the values of(∗ using by the formula
(6a).

Step 3: By using shortest processing time rule on the last
machine�� determine the optimal sequence of jobs.

Step 4: Finally, find ,� for the obtained optimal sequences
of jobs.

Recommendation: One can create other algorithm that
works for all types of data is my recommendation for other
researchers.

3. Example

For the following 3-jobs 3-machine flow shop scheduling
problem, find the optimal sequence of jobs such that ,� is
minimum.

Jobs
Machines JK JL JM

1 �		 = 3 ��	 = 6 ��	 = 12
2 �	� = 5 ��� = 8 ��� = 10
3 �	� = 4 ���	�	T ��� = 11

Solution:

Here, what we have to do is that, according to the above
algorithm, we have to find:-

a. (∗
b. Due-dates of each job.
c. An optimal sequence.
Step 1:

91 Geleta Tadele Mohammed: Special Case Algorithm for N-jobs M-machines Flow Shop Scheduling Problems

Clearly, U��{3,5,4} = 5 < U��{6,8,7} = 6

U��{6,7,8} = 8 < U��	{12,10,11} = 10

And also, let say job 1 is x and job 2 is y.
Then, �	"��$= (3) (8) =24

�	"��$= (3) (10) =30

�	$��"= (5) (6) =30

�	$��"= (5) (12) =60

This implies that

W�	"��$ = (3)(8) = 24	 < �	$��" = 30�	"��$ = (3)(10) = 30 < �	$��" = 60

Therefore, all conditions for step 1 are satisfied.
Step 2:

Since, 	k∗=∑ 1*23+4352 ∑ 1*26+3652 7∑ 1*23+4352 1837∑ 1*23+4352 1*93+7∑ 1*23+4352 1*:3+7...7	∑ 1*23+4352 1*<3+∑ *1*23++84352 … (13)

Then, because of our problem is for n=3=m, 	k∗ becomes,

	k∗=∑ 1*23+9352 ∑ 1*26+3652 7∑ 1*23+9352 1837∑ 1*23+9352 1*93+∑ *1*23++89352

=
X22(X22)7(X227X28)(X227X28)7(X227X28X29)(X227X28X29)7X22X827X28X887X29X897X22X927X28X987X22X99X2287X2887X298

=
(�)(�)7(�7Y)(�7Y)7(�7Y7!)(�7Y7!)7(�)(Z)7(Y)([)7(!)(T)7(�)(�)7(Y)(\)7	(�)	()(�)87(Y)87(!)8 =

!�!Y\

=8.48

Now, by using this values of 	k∗ we can assign the due
dates of each job as follows:

Jobs Machine JM Due-date (]*^+= 	_∗J*M^+)
1 12 101.76
2 10 84.8
3 11 93.28

Step 3:

As indicated in the above algorithm, we arrange jobs as
per shortest processing time rule on machine 3(��). And also,
the same result we obtain, if we arrange jobs by earliest due
date rule.

Therefore, by using both of them (one of them is enough),
we obtain the optimal sequence of jobs 2-3-1.

Step 4:

Determination of,�. Here, ,�is listed in the following table
for all possible sequences of jobs we have.

Sequences of

jobs(`)

Processing time

multiple	_∗ Squared value of

lateness aL

1-2-3 8.48 13983.976

1-3-2 8.48 14187.376

3-1-2 8.48 13975.976

3-2-1 8.48 13687.776

2-3-1 8.48 13361.776

2-1-3 8.48 11254.736

Note that, ,� is calculated by ,� = ∑ �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ −-��		k∗�*��++� , because of � = U = 3 for our problem, then it
becomes

,�=∑ �∑ �*	�+���	 � + �*��+ + �*��+ − 	k∗�*��++����	

=(�		 + ��	7��	 − 	k∗�)�+(�		 + �	�7���7��� −	k∗���)�+(�		 + �	�7�	�7��� + ��� − 	k∗���)�

For instance, for the sequence of jobs2-3-1:-

Jobs
Machines JK JL JM

2 �		 = 5 ��	 = 8 ��	 = 10

3 �	� = 4 ��� = 7 ��� = 11

1 �	� = 3 ���	�	Z ��� = 12

,�= (5 + 8 + 10 − (8.48)10)� + (5 + 4 + 7 + 11 −(8.48)11)�+(5 + 4 + 	3 + 6 + 12 − (8.48)12)�

=	(23 − 84.8)�+(27 − 93.28)�+(30 − 101.76)�

=	(−61.8)� + (−66.28)�+(−71.76)�

=3819.24+ 4393.0384+5149.4976

=13361.776

Similarly, for the sequence of jobs1-3-2 we have,

Jobs
Machines JK JL JM

1 �		 = 3 ��	 = 6 ��	 = 12

3 �	� = 4 ��� = 7 ��� = 11

2 �	� = 5 ���	�	[��� = 10

,�=(3 + 6 + 12 − (8.48)12)�+(3 + 4 + 7 + 11 −(8.48)11)� + (3 + 4 + 	5 + 8 + 10 − (8.48)10)�

= 	(21 − 101.76)�+(25 − 93.28)�+(30 − 84.8)�

=	(−80.76)� + (−68.28)�+(−54.8)�

= 6522.1776+4662.1584+3003.04

= 14187.376

For the sequence of jobs1-2-3 we have,

 Applied and Computational Mathematics 2017; 6(2): 88-92 92

Jobs
Machines JK JL JM

1 �		 = 3 ��	 = 6 ��	 = 12
2 �	� = 5 ��� = 8 ��� = 10
3 �	� = 4 ���	�	T ��� = 11

,�=(3 + 6 + 12 − (8.48)12)�+(3 + 5 + 8 + 10 −(8.48)10)� + (3 + 5 + 	4 + 7 + 11 − (8.48)11)�

= 	(21 − 101.76)�+(26 − 84.8)�+(30 − 93.28)�

=	(−80.76)� + (−58.8)�+(−63.28)�

= 6522.1776+3457.44+4004.3584

= 13983.976

For the sequence of jobs 2-1-3 we have,

Jobs
Machines JK JL JM

2 �		 = 5 ��	 = 8 ��	 = 10
1 �	� = 3 ��� = 6 ��� = 12
3 �	� = 4 ���	�	T ��� = 11

,�=(5 + 8 + 10 − (8.48)10)�+(5 + 3 + 6 + 12 −(8.48)12)� + (5 + 3 + 	4 + 7 + 11 − (8.48)11)�

= 	(23 − 84.8)�+(31 − 101.76)�+(44 − 93.28)�

=	(−61.8)� + (−70.76)�+(−49.28)�

= 3819.24+5006.9776+2428.5184

= 11254.736

For the sequence of jobs 3-1-2 we have,

Jobs
Machines JK JL JM

3 �		 = 4 ��	 = 7 ��	 = 11
1 �	� = 3 ��� = 6 ��� = 12
2 �	� = 5 ���	�	[��� = 10

,�=(4 + 7 + 11 − (8.48)11)�+(4 + 3 + 6 + 12 −(8.48)12)� + (4 + 3 + 	5 + 8 + 10 − (8.48)10)�

= 	(22 − 93.28)�+(25 − 101.76)�+(30 − 84.8)�

=	(−71.28)� + (−76.76)�+(−54.8)�

= 5080.8384+5892.0976+3003.04

= 13975.976

For the sequence of jobs3-2-1 we have,

Jobs
Machines JK JL JM

3 �		 = 4 ��	 = 7 ��	 = 11

2 �	� = 5 ��� = 8 ��� = 10

1 �	� = 3 ���	�	Z ��� = 12

,�=(4 + 7 + 11 − (8.48)11)�+(4 + 5 + 8 + 10 −(8.48)10)� + (4 + 5 + 	3 + 6 + 12 − (8.48)12)�

= 	(22 − 93.28)�+(26 − 84.8)�+(30 − 101.76)�

=	(−71.28)� + (−58.8)�+(−71.76)�

= 5080.8384+3457.44+5149.4976

= 13687.776

Now, from the above table the optimal sequence of the
given jobs is 2-3-1 with ,� =11254.736 (cde� = 2	�f�d�g�deI = 1). This completes our
example.

References

[1] Chenge, T. C. E., “Optimal due date determination and
scheduling of n- jobs on a single machine”, Journal of the
Operation Research society 35, pp.433-437, 1984.

[2] Ikram, M.,” A note on minimization of lateness Cost Function
and Determination of optimal Due –date in two machine
problem,” Pure Applied Mathematika sciences, Vol. XXIII, 1-
2, March 1986.

[3] Geleta Tadele Mohammed. New Algorithm for N-jobs on M-
machine Flow Shop Scheduling Problems. Applied and
Computational Mathematics Journal. Vol. 5, No. 1, 2016, pp.
1-9. doi: 10.11648/j.acm.20160501.11

[4] Johnson, S. M. “Optimal two and three stage production
schedules with setup times included.” Naval Research
Logistics Quarterly, Vol I, 61-68, 1954.

[5] [5]Jackson, J.R.,” An extension of Johnson’s results on lot
scheduling”, Naval Research Logistics Quarterly, Vol 3,
pp.201-2003, 1956.

[6] Ibrahim, M. A., “Algorithms for Sequencing and Scheduling,”
Industrial Engineering Department, College of Engineering,
King saud University, Riyadh, Saudi Arabia.

[7] Osman, M.R., Ismail, N., Zairian, M.R.M, Yusuf, R.M.,
Sapuan, S. M.” sheet metal Fabrication Scheduling Using
Selective Performance Measure and priority Dispatching
Rule,” International Journal of Engineering and Technology,
Vol.1 (1), pp.74-83, 2004.

[8] Taylor, F.W., “Shop Management”, Harper and Bros, New
York, 1911.

[9] Herrmann, Jeffrey. W “A history of production Scheduling” in
Handbook of Production Scheduling, Springer, New York,
2006.

[10] Dudek, R. A., S. S. Panwalkar, and M.L. Smith,” The lessons
for flow shop scheduling Research,” Operation Research, Vol
40(1), pp.7-13, 1993.

[11] Conway, R.W., Maxwell, W.L., and Miller, L.W.” Theory of
Scheduling,” Addison-Wesley Publishing Company,
Massachusetts, 1967.

[12] Miloš Šeda “Mathematical Models of Flow Shop and Job
Shop Scheduling Problems”, International Journal of Applied
Mathematics and Computer Sciences Volume 4 Number 4.

[13] Kerem Bülbül Philip Kaminsky, Candace Yano,” Flow Shop
Scheduling with Earliness, Tardiness, and Intermediate
Inventory Holding Costs”, Industrial Engineering and
Operations Research, University of California, Berkeley,
California 94720-1777.

