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Abstract: In this paper we have developed an algorithm for n-jobs with m-machine flow shop scheduling problems in order 
to handle variety of data type than Geleta [3]. In other hands, as in Geleta [3] it main objective is how to obtain optimal 
sequence of jobs with aim of minimum squared value of lateness. 
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1. Introduction 

We extended the work of change [1], Ikram [2] and Geleta 
[3] to special class of n-jobs m-machine scheduling problems 
it to handle other data type. The algorithm seems the same 
with that of Geleta’s but it is shifted accordingly to other data 
type. Still it does not work for all types of data. 

As in Geleta [3],throughout this paper,��� represents the 
processing time of job �  on machine ���� the order of 
machines is fixed and it is�	 → �� → �� → ⋯ → �(��	) →��,with the completion time of job done on��� position place 
is given by 

�� = �∑ �	����	 � + ��� + ��� +⋯+ ���, for �=1: n        (1) 

Problem formulation and assumption 

In addition to the assumption of Geleta [3], I want to have 
only the following: 

���	{�	�	} ≤ ���{���}                    (2a)	
���{���} ≤ ���{���}                     (2b)	
���	{���	} 	≤ ���{�!�}                    (2c) 

. 

. 

.	

���	{�(��	)� 	} 	≤ ���{���}	                 (2d) 

And if �	" < �	$ , then the following conditions holds 
true: 

�	"��$ ≤ �	$��"                         (3a) 

�	"��$ ≤ �	$��"                       (3b) 

�	"�!$ ≤ �	$�!"                        (3c) 

. 

. 

. 

�	"��$ ≤ �	$��"                      (3d) 

Since all jobs spend more amount of time on the last 
machine, then ��= k��� , � = 1:	�, where ( is processing time 
multiple. This is because of the condition (2a) to (2d). 

Let )  denotes an arbitrary sequence, and *�+  represents 
jobs occupying ���  position of ) . If ,*�+, �*�+	���	�*�+ 
represents lateness, completion time and assigned due date of 
the job in the ���, then our objective function is to minimize 

,�=∑ ,�*�+-��	 =∑ (�*�+ − �*�+)�-��	              (4) 

Since the completion time of the ��� for any sequence ) is: �*�+ = �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ , for � =1: n 
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and by using�*�+= k�*	�+, � = 1:	�equation (4) becomes: 

,�=∑ �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ − k�*	�++�-��	     (5) 

This is a function of k and that have to be minimized. 

By exactly the same procedure as in Geleta [13], we have 
the following optimal processing time multiple	k∗ andoptimal 
due date: 

	k∗=∑ 1*23+4352 ∑ 1*26+3652 7∑ 1*23+4352 1837∑ 1*23+4352 1*93+7∑ 1*23+4352 1*:3+7...7	∑ 1*23+4352 1*<3+∑ *1*23++84352                              (6a) 

Hence, by using the value of 	k∗we assign the value of due 
dates of each to be 

�*�+= 	k∗�*��+, � = 1:	�                  (6b) 

Theorem (Minimization of ,� under a certain condition): 

Our objective function ,� = ∑ �∑ �*	�+���	 � + �*��+ +-��	�*��+ +⋯+ �*��+ − k�*	�++� can be minimized by applying 
the rule that job x should be done before job y if the 
following conditions are satisfied: 

�	" < �	$                           (6c) 

�	"��$ ≤ �	$��"                 (6d) 

�	"��$ ≤ �	$��"                   (6e) 

�	"�!$ ≤ �	$�!"                        (6f) 

. 

. 

. 

�	"��$ ≤ �	$��"                      (6g) 

Proof: 

Since , ,� = ∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+-��	�*��+ − k�*	�++�, the extending this expression we can obtain 
that 

,� ==>*?=�*	�+�
��	 @ + �*��+ + �*��+ +⋯+ �*��++� + �k�*	�+�� − 	2k�*	�+B?=�*	�+�

��	 @ + �*��+ + �*��+ +⋯+ �*��+CD-
��	  

By having re-arrangement of summation inside the bracket we have, 

,�=∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	  +∑ �k�*	�+�� − 2(-��	 ∑ ��*	�+E�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+F�-��	    (7) 

From the third term of Equation (7), we obtain: ∑ ��*	�+E�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+F�-��	 = ∑ �*	�+ ∑ �*	�+ +���	-��	 ∑ �*	�+-��	 ���+∑ �*	�+-��	 �*��++∑ �*	�+-��	 �*!�++... +∑ �*	�+-��	 �*��+, which is constant and 
independent of the sequence of the jobs change [1]. 

And also, the middle term ∑ �k�*	�+��-��	  is constant (because of it is the sum of square quantity) and independent of 
sequence of the jobs. 

Now, the remaining thing to prove is that ∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	  can be minimized by applying the 
conditions given above in the theorem? 

The answer is yes! 
Let)	 be a sequence of jobs in which job x and y are arranged in a position k and k+1 respectively, and )� be a sequence of 

the jobs in which job x and y are arranged in apposition of k+1 and k respectively. 

Let G	()	) =∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	                                 (8) 

And 

G	()�) =∑ *�∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��++�-��	                                             (9) 

Now, by expanding equation (9), we obtain 

G	()	) =��*		+ + �*�	+ + �*�	+ +⋯+ �*�	+�� + ��*		++�*	�+ + �*��+ + �*��+ +⋯+ �*��+��+��*		++�*	�++�*	�+ + �*��+ +�*��+ +⋯+ �*��+��+��*		++�*	�++�*	�++�*	!+ + �*�!+ + �*�!+ +⋯+ �*�!+��+... +��*		++�*	�++�*	�++�*	!+ +⋯+�*	(H�	)++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	"+ + �*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H7�)+ + �*�(H7�)+ + �*�(H7�)+ +⋯+ �*�(H7�)+��+... 

+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	-+ + �*�-+ + �*�-+ +⋯+ �*�-+��                                      (10) 
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G	()�) =��*		+ + �*�	+ + �*�	+ +⋯+ �*�	+�� + ��*		++�*	�+ + �*��+ + �*��+ +⋯+ �*��+��+��*		++�*	�++�*	�+ + �*��+ + �*��+ +⋯+�*��+��+��*		++�*	�++�*	�++�*	!+ + �*�!+ + �*�!+ +⋯+ �*�!+��+... +��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)+ + �*�(H�	)+ +�*�(H�	)+ +⋯+ �*�(H�	)+��+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	$+ + �*�$+ + �*�$+ +⋯+�*�$+��+��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�	)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+��+��*		++�*	�++�*	�+ +⋯+�*	(H7�)+ +�*�(H7�)+ + �*�(H7�)+ +⋯+ �*�(H7�)��+... +��*		++�*	�++�*	�++�*	!+ +⋯+ �*	-+ + �*�-+ + �*�-+ +⋯+ �*�-+��(11) 

Now,G()	) − G	()�) = ��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+�2 + 

��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	"++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+�� 

−��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+� 
−��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�	)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+��                   (12) 

Then by simplifying equation (12) we get 

G()	) − G	()�) 
=�*	"+��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)++�*	"++�*	$+ + �*�$+ + �*�$+ +⋯+ �*�$+� −	�*	$+��*		++�*	�++�*	�++�*	!+ +⋯�*	(H�	)++�*	$++�*	"+ + �*�"+ + �*�"+ +⋯+ �*�"+� 

=�*	"+�*		++�*	"+�*	�++�*	"+�*	�++…+�*	"+�*	(H�	)++�*	"+�*	"++�*	"+�*	$++�*	"+�*�$++�*	"+�*�$++…+�*	"+�*�$+ −�*	$+�*		+��*	$+�*	�+ − �*	$+�*	�+ − �*	$+�*	!+ − �*	$+�*	(H�	)+ − �*	$+�*	"+ − �*	$+�*�"+ − �*	$+�*�"+ − �*	$+�*!"+ −⋯−�*	$+�*�"+ 
=��*	"+�� − ��*	$+�� + E�*	"+ − �*	$+F��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)+� + ��*	"+�*	$+ + �*	"+�*�$+ + �*	"+�*�$+ +�*	"+�*!$+ +⋯+ �*	"+�*�$+ − �*	$+�*	"+ − �*	$+�*�"+ − �*	$+�*�"+ − �*	$+�*!"+ −⋯− �*	$+�*�"+� 

=��*	"+�� − ��*	$+�� + E�*	"+ − �*	$+F��*		++�*	�++�*	�++�*	!+ +⋯+ �*	(H�	)+� + *�*	"+�*	$+ − �*	$+�*	"++ + *�*	"+�*�$+ −�*	$+�*�"++ + *�*	"+�*�$+ − �*	$+�*�"++ + *�*	"+�*!$+ − �*	$+�*!"++ + ⋯+ *�*	"+�*�$+ − �*	$+�*�"++ 
Now, if �	" < �	$ 

�	"��$ 	≤ �	$��" 

�	"��$ 	≤ �	$��" 

�	"�!$ 	≤ �	$�!" 

. 

. 

. 

�	"��$ 	≤ �	$��", 

Then, G()	) < G	()�). 
Thus, the interchanging of job � and I reduces the value of ,�. Hence, job � should be done before job I. Therefore, the 

conditions stated in the above theorem are satisfied.Now, by 
repeatedly applying the above rule,,�can be minimized by 
arranging jobs depending on their processing time on the first 
machine as S.P.T rule. 

2. Algorithms to Get Optimal Sequence 

Step 1: Verify that the conditions given from (2a)-(2d) and 
(3a) – (3d). If a1l of these conditions holds true proceed to 
the next step. Else stop. 

Step 2: Determine the values of(∗  using by the formula 
(6a). 

Step 3: By using shortest processing time rule on the last 
machine�� determine the optimal sequence of jobs. 

Step 4: Finally, find ,� for the obtained optimal sequences 
of jobs. 

Recommendation: One can create other algorithm that 
works for all types of data is my recommendation for other 
researchers. 

3. Example 

For the following 3-jobs 3-machine flow shop scheduling 
problem, find the optimal sequence of jobs such that ,� is 
minimum. 

Jobs 
Machines JK JL JM 

1 �		 = 3 ��	 = 6 ��	 = 12 
2 �	� = 5 ��� = 8 ��� = 10 
3 �	� = 4 ���	�	T ��� = 11 

Solution: 

Here, what we have to do is that, according to the above 
algorithm, we have to find:- 

a. (∗ 
b. Due-dates of each job. 
c. An optimal sequence. 
Step 1: 
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Clearly, U��{3,5,4} = 5 < U��{6,8,7} = 6 

U��{6,7,8} = 8 < U��	{12,10,11} = 10 

And also, let say job 1 is x and job 2 is y. 
Then, �	"��$= (3) (8) =24 

�	"��$= (3) (10) =30 

�	$��"= (5) (6) =30 

�	$��"= (5) (12) =60 

This implies that 

W�	"��$ = (3)(8) = 24	 < �	$��" = 30�	"��$ = (3)(10) = 30 < �	$��" = 60 

Therefore, all conditions for step 1 are satisfied. 
Step 2: 

Since, 	k∗=∑ 1*23+4352 ∑ 1*26+3652 7∑ 1*23+4352 1837∑ 1*23+4352 1*93+7∑ 1*23+4352 1*:3+7...7	∑ 1*23+4352 1*<3+∑ *1*23++84352 …                    (13) 

Then, because of our problem is for n=3=m, 	k∗ becomes, 

	k∗=∑ 1*23+9352 ∑ 1*26+3652 7∑ 1*23+9352 1837∑ 1*23+9352 1*93+∑ *1*23++89352  

=
X22(X22)7(X227X28)(X227X28)7(X227X28X29)(X227X28X29)7X22X827X28X887X29X897X22X927X28X987X22X99X2287X2887X298  

=
(�)(�)7(�7Y)(�7Y)7(�7Y7!)(�7Y7!)7(�)(Z)7(Y)([)7(!)(T)7(�)(	�)7(Y)(	\)7	(�)	(		)(�)87(Y)87(!)8 =

!�!Y\  

=8.48 

Now, by using this values of 	k∗  we can assign the due 
dates of each job as follows: 

Jobs Machine JM Due-date (]*^+= 	_∗J*M^+) 
1 12 101.76 
2 10 84.8 
3 11 93.28 

Step 3: 

As indicated in the above algorithm, we arrange jobs as 
per shortest processing time rule on machine 3(��). And also, 
the same result we obtain, if we arrange jobs by earliest due 
date rule. 

Therefore, by using both of them (one of them is enough), 
we obtain the optimal sequence of jobs 2-3-1. 

Step 4: 

Determination of,�. Here, ,�is listed in the following table 
for all possible sequences of jobs we have. 

Sequences of 

jobs(`) 

Processing time 

multiple	_∗ Squared value of 

lateness aL 

1-2-3 8.48 13983.976 

1-3-2 8.48 14187.376 

3-1-2 8.48 13975.976 

3-2-1 8.48 13687.776 

2-3-1 8.48 13361.776 

2-1-3 8.48 11254.736 

Note that, ,� is calculated by ,� = ∑ �∑ �*	�+���	 � + �*��+ + �*��+ +⋯+ �*��+ −-��		k∗�*��++� , because of � = U = 3  for our problem, then it 
becomes 

,�=∑ �∑ �*	�+���	 � + �*��+ + �*��+ − 	k∗�*��++����	  

=(�		 + ��	7��	 − 	k∗�		)�+(�		 + �	�7���7��� −	k∗���)�+(�		 + �	�7�	�7��� + ��� − 	k∗���)� 

For instance, for the sequence of jobs2-3-1:- 

Jobs 
Machines JK JL JM 

2 �		 = 5 ��	 = 8 ��	 = 10 

3 �	� = 4 ��� = 7 ��� = 11 

1 �	� = 3 ���	�	Z ��� = 12 

,�= (5 + 8 + 10 − (8.48)10)� + (5 + 4 + 7 + 11 −(8.48)11)�+(5 + 4 + 	3 + 6 + 12 − (8.48)12)� 

=	(23 − 84.8)�+(27 − 93.28)�+(30 − 101.76)� 

=	(−61.8)� + (−66.28)�+(−71.76)� 

=3819.24+ 4393.0384+5149.4976 

=13361.776 

Similarly, for the sequence of jobs1-3-2 we have, 

Jobs 
Machines JK JL JM 

1 �		 = 3 ��	 = 6 ��	 = 12 

3 �	� = 4 ��� = 7 ��� = 11 

2 �	� = 5 ���	�	[ ��� = 10 

,�=(3 + 6 + 12 − (8.48)12)�+(3 + 4 + 7 + 11 −(8.48)11)� + (3 + 4 + 	5 + 8 + 10 − (8.48)10)� 

= 	(21 − 101.76)�+(25 − 93.28)�+(30 − 84.8)� 

=	(−80.76)� + (−68.28)�+(−54.8)� 

= 6522.1776+4662.1584+3003.04 

= 14187.376 

For the sequence of jobs1-2-3 we have, 
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Jobs 
Machines JK JL JM 

1 �		 = 3 ��	 = 6 ��	 = 12 
2 �	� = 5 ��� = 8 ��� = 10 
3 �	� = 4 ���	�	T ��� = 11 

,�=(3 + 6 + 12 − (8.48)12)�+(3 + 5 + 8 + 10 −(8.48)10)� + (3 + 5 + 	4 + 7 + 11 − (8.48)11)� 

= 	(21 − 101.76)�+(26 − 84.8)�+(30 − 93.28)� 

=	(−80.76)� + (−58.8)�+(−63.28)� 

= 6522.1776+3457.44+4004.3584 

= 13983.976 

For the sequence of jobs 2-1-3 we have, 

Jobs 
Machines JK JL JM 

2 �		 = 5 ��	 = 8 ��	 = 10 
1 �	� = 3 ��� = 6 ��� = 12 
3 �	� = 4 ���	�	T ��� = 11 

,�=(5 + 8 + 10 − (8.48)10)�+(5 + 3 + 6 + 12 −(8.48)12)� + (5 + 3 + 	4 + 7 + 11 − (8.48)11)� 

= 	(23 − 84.8)�+(31 − 101.76)�+(44 − 93.28)� 

=	(−61.8)� + (−70.76)�+(−49.28)� 

= 3819.24+5006.9776+2428.5184 

= 11254.736 

For the sequence of jobs 3-1-2 we have, 

Jobs 
Machines JK JL JM 

3 �		 = 4 ��	 = 7 ��	 = 11 
1 �	� = 3 ��� = 6 ��� = 12 
2 �	� = 5 ���	�	[ ��� = 10 

,�=(4 + 7 + 11 − (8.48)11)�+(4 + 3 + 6 + 12 −(8.48)12)� + (4 + 3 + 	5 + 8 + 10 − (8.48)10)� 

= 	(22 − 93.28)�+(25 − 101.76)�+(30 − 84.8)� 

=	(−71.28)� + (−76.76)�+(−54.8)� 

= 5080.8384+5892.0976+3003.04 

= 13975.976 

For the sequence of jobs3-2-1 we have, 

Jobs 
Machines JK JL JM 

3 �		 = 4 ��	 = 7 ��	 = 11 

2 �	� = 5 ��� = 8 ��� = 10 

1 �	� = 3 ���	�	Z ��� = 12 

,�=(4 + 7 + 11 − (8.48)11)�+(4 + 5 + 8 + 10 −(8.48)10)� + (4 + 5 + 	3 + 6 + 12 − (8.48)12)� 

= 	(22 − 93.28)�+(26 − 84.8)�+(30 − 101.76)� 

=	(−71.28)� + (−58.8)�+(−71.76)� 

= 5080.8384+3457.44+5149.4976 

= 13687.776 

Now, from the above table the optimal sequence of the 
given jobs is 2-3-1 with ,� =11254.736 (cde� = 2	�f�d�g�deI = 1).  This completes our 
example. 
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