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Abstract: The current paper offers an analysis of the steady boundary layer flow and heat transfer of a non-Newtonian
micropolar fluid flowing through a vertical exponentially stretching cylinder along its axial axis. The obtained system of
nonlinear partial differential equations along with the appropriate boundary conditions is abridged to dimensionless form by
means of the boundary layer estimates and a suitable similarity transformation. The subsequent nonlinear coupled system of
ordinary differential equations subject to the appropriate boundary conditions is solved numerically with the help of Keller-box
method. The effects of the involved parameters are presented through graphs. The allied physical features for the flow and heat

transfer characteristics that is the skinfriction coefficient and Nusselt numbers are presented for different parameters.
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1. Introduction

The fundamental idea about the micropolar fluid was given
by Egingen [1] because the Newtonian fluid theory does not
exhibits all the properties of some complex nature fluids like
liquid crystals, suspensions containing micro size particles,
lubricants are a few particular examples of micropolar fluids.
The idea was to make use of the law of conservation of
angular momentum along with the conservation of mass and
linear momentum. In recent years many researchers have
discussed the study of micropolar fluids for different
geometries and various situations due to its real world
applications. Rosali et al [2] have prescribed the behavior of
micropolar fluids flowing towards a permeable stretching
sheet immersed in a porous medium and the fluid flow was
assumed to be effected via suction through the surface of the
sheet. The problem of heat generation or absorption effects
over the heat transfer and stagnation-point fluid flow of a
micropolar fluid flowing over a stretching surface is presented
by Attia [3]. His effort indicated that the micropolar fluid
parameter effects over flow and heat transfer depends upon the
stretching velocity magnitude. Further, Nazar et al [4] have
analyzed the problem of unsteady, boundary Ilayer,

incompressible flow of a micropolar fluid over a stretching
sheet. Moreover, Nadeem et al [5] have provided the
analytical analysis of the problem of axisymmetric stagnation
flow of a micropolar nanofluid in a moving cylinder. The fluid
flow was assumed to be through the annular region between
the two concentric cylinders. In another work, Nadeem et al [6]
have inspected the influence of micropolar fluid flow in a
vertical annulus. Few other interesting works concerning the
micropolar fluid flow for different geometries are referred in
[7-10].

Fluid flow over a cylinder that is stretched linearly along its
axial direction has gained much attention in recent years.
Bachok and Ishak [11] have tackled the problem of laminar
flow of an incompressible viscous fluid flow over a stretching
cylinder with prescribed surface heat flux. In a fresh attempt,
Gang et al [12] have debated the problem of unsteady viscous
fluid flowing over a stretching cylinder. In another work, Fag
and Yao [13] have discussed the viscous swirling flow over a
stretching cylinder. Recently, Wang [14] has communicated
the influence of natural convection heat transfer over a vertical
stretching cylinder. Few pertinent works concerning the
boundary layer flow over stretching surfaces are cited in
[15-21]. The determination of the contemporary effort is to
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provide a numerical solution for the flow of a non-Newtonian
micropolar fluid flowing over a vertical cylinder that is
stretched exponentially along the axial direction taking into
account the dissipation effects. The numerical solutions are
computed by applying the second order finite difference
scheme, known as the Keller-box technique. The influence of
involved parameters is graphed in the results and discussion
section. The important physical features associated with the
problem like the skinfriction coefficient and the local Nusselt
numbers are discussed at the end.

2. Formulation

Consider the problem of mixed convection boundary layer
flow of a viscous fluid flowing over a vertical circular cylinder
of radius a. The cylinder is assumed to be stretching

exponentially along the axial direction with velocity U . The
temperature at the surface of the cylinder is assumed to be a

constant 7' and the uniform ambient temperature is taken to
be 7' such that the quantity 7 —7 >0 in case of the

assisting flow, while 7 —T <0 in case of the opposing

flow, respectively. Under these assumptions the boundary
layer equations of motion and heat transfer are

u, +=+w, =0, (1)
T
1 1
uw, +ww, = f—@+u(l+K)(w”_ +—w )+
p 0z r ?)

uK(ngNr) +968(T -T),

uN_ +wN_=vA(N, —l—lNT —ﬂ)
oo )
_ﬁ(wr +2N)7
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uT +ul = o(f, +27)+ Lo, @
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where the velocity components along the (r,z) axes are

(u,w) , p is density, v is the kinematic viscosity, p is

pressure, g is the gravitational acceleration along the z —
direction, 3 is the coefficient of thermal expansion, N is
the angular velocity, K is the micropolar parameter, ~ is
the micropolar constant, j is the microrotation density, T
is the temperature, « is the thermal diffusivity and c, is the

specific heat at constant pressure.
boundary conditions for the problem are

The corresponding

u(a,z) =0, w(a,z) =U ,w(r,z) = 0as r— o0, (5)

N(a,z) = n(u, —w )| N(r,z) = 0asr— oo, (6)

r—a’

T(a,z) =T, (z), T(r,z) =T _ asr—o0, (7)

where U = 2ake”" is the fluid velocity at the surface of the

cylinder.

3. Solution of the Problem

Introduce the following similarity transformations:

w=—oke 20w —vakelp(n), (g
Jn
T-T 2
N = ke M) = == )

where the characteristic temperature difference is calculated
With the help of

transformations (6) and (7) , Egs. (1) to (3) take the

form

from the relations 7 —T = ce’".

AL+ K)0f" + ")+ Re(ff" — %)+ gM’ L ReAd =0, (10)
" Re ’ / _& _bﬁ ’ _
M SN — ) = =P g M) =0, (1)

n0" 4+ 60" + RePr(f6' — f'6) + Pr Eenf” =0, (12)

inwhich Re = aU,_ /4v isthe Reynolds number, K is the

micropolar parameter, A = gBa(T, =T )/U? is the
natural convection parameter, and b =a’/2j are the

micropolar coefficients, Pr = v/« is the Prandtl number

and FEc= Ui, / Cp(Tw —T_.) is the Eckert number- The
boundary conditions in nondimensional form become

f(l)zO, f’(l)zl, f'—0, asn— o0, (13)
M(l) = —4nf"(1), M — 0, asn— o0, (14)
9(1):1, 0 — 0, as n — oo. (15)

The important physical quantities such as the shear stress at the
surface T , the skinfriction coefficient ¢ = the heat flux at the

surface of the cylinder ¢, and the local Nusselt number Nu are

T, =T |_.» ¢, Re = f’ (1), (16)

g,=-kT |, Nu/Re=-0'(1). (17
The solution of Fgs.(10 —12) subject to the boundary

conditions (13 —15) is obtained through the highly
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sufficient second order numerical scheme called the
Keller-box technique. To develop the technique, the system of
differential equations (10 —12) along with the boundary

conditions (13715) is converted into a first order

differential system by choosing

F=f, B=F, [ =M, F,=0,  (18)
the resulting system can be stated now as
(1+K)(7]F;’+F;)+Re(fF,’szlz)+§F;+Re/\9:0 (19)

0, +2S(/F, —EM)—;\—‘;]W -2Xnr =0, @0)

nE, +F, +Re Pr(fF, — F,0)+Pr EcnF} =0, (21)
with the boundary conditions

fM=0, u()=1, u—-0,an >0, (22

M) =4nf"(1), 6 -0, asn - o, (23)

=1, -0, asn — oo, (24)

Further details of the numeric solution can be found in
references [22-25]. The detailed discussion about the obtained
numeric solutions is presented in the next section.

4. Results and Discussion

The present work is an effort to provide a numerical scheme
that gives the solution of the problem of natural convection
boundary layer flow of a non-Newtonian micropolar fluid
flowing over a vertical cylinder that is stretched exponentially
along its axial axis. The numerical solutions of the problem
are computed using the second order implicit finite difference
scheme called the Keller-box method. The influence of the
involved parameters is presented both graphically and in
tabulated form in this section. The solutions are computed for

both (n=1/2)

concentration (n = 0) of the angular velocity at the surface

strong  concentration and weak

of the stretching cylinder. Fig.1 displays the influence of
velocity profile f ' for different combinations of Reynolds
numbers Re and the micropolar parameter K, for fixed
values of the other parameters. The solutions in Fig.1 are
curved for strong concentration case and the range of

Reynolds numbers is chosen up to Re = 20000 (such high
values of Re corresponds to turbulent flows). From Fig.1

it clicks that with the increase in Re the velocity profile
decreases whereas with increase in K the velocity profile
increases. Fig.2 is graphed to observe the impact of natural

convection parameter A and the Eckert number Fec. From
Fig.2 it is observed that with increase in both A and Ec

the velocity profile increases. This strengthen the observation
that enhanced natural convection parameter A requires
higher density difference in fluid that in return requests
increase in fluid velocity. It is also noticed from Fig.2 that
the influence of natural convection parameter is more
significant for higher values of Eckert numbers. Fig.3
conveys the behavior of velocity profile f' plotted for
different values of micropolar parameter K for both the
strong and weak concentration cases. From Fig.3 it is
noticed that the velocity profile f' has larger values for
strong concentration as compared with the weak concentration
situation. The pattern adopted by the non-dimensional angular
velocity profile M(n) is presented for strong concentration
in Figs.(4—5)
parameters. Fig.4 gives the impact of micropolar parameter

for different combinations of involved

K and natural convection parameter A over the micropolar
velocity profile M. From Fig.4 it is noted that with

increase in both K and A the micropolar velocity profile
M decreases. Fig.5 predicts the impact of micropolar
coefficient /A and the Reynolds numbers Re for the
micropolar velocity M. From Fig.5 it is witnessed that
with increase in the micropolar velocity profile increases,
whereas with increase in Re the micropolar velocity profile
M decreases. The imprint of micropolar parameter K,
Eckert numbers FEc and Prandtl numbers Pr over the
non-dimensional micropolar velocity function is portrayed in
Figs.(6 —7) for the weak concentration case. Fig.6
inculcates the imprint of micropolar velocity for different
pairs of the micropolar parameter K and the Eckert numbers
Ec. From Fig.6 itis observed that with increase in both K
and A the angular velocity profile decreases. It is also
noticed from Fig.6 that the influence of K is significant
for large values of the Eckert numbers FEc. Fig.7 is
sketched to observe the impact of Prandtl numbers Pr up to
Pr =50 over the micropolar velocity profile /A From
Fig.7 it is observed that with increase in Pr the angular
velocity profile decreases. The behavior of non-dimensional
velocity profile is plotted in Figs.(8 —9) for different
combinations of Prandtl numbers, Eckert numbers, Reynolds
numbers and micropolar parameter. Fig.8 contains the
curves predicting the influence of Pr and Ec over the
temperature profile @ From Fig.8 it is noted that with
increase in both Pr and FEc the temperature profile
decreases. Fig.9 shows the impact of K and Re over the
temperature profile @ for Reynolds numbers up to
Re = 5000 . From Fig.9 it is observed that with increase in
both K and Re the temperature profile and the thermal
boundary layer thickness decays. The behavior of skinfriction

coefficient ¢, for different Prandtl numbers and Reynolds
numbers is shown in Fig.10 plotted against micropolar

parameter K. From the observed graph it is noted that with
increase in all Re,Pr and K the skinfriction coefficient
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increases. The pattern adopted by the local Nusselt numbers
Nu for different Eckert numbers and Reynolds numbers
curved against Prandtl numbers is presented in Fig.11. From

Fig.11 itis observed that with increase in all the Ec,Pr and
Re the local Nusselt numbers increases. Figs.(12 —13)
shows the streamlines for the fluid flow sketched in the (r, z)

plane graphed for different K. The decaying pattern
observed is slower for small values of K.

A=05 A=1 Pr=7 Ec=02 b=1 n=172

T T 3

Re = 20000, 2000, 200, 20,2 |

Fig. 1. Influence of Reynolds numbers Re over velocity profile f' for
different K .

Re =10, K=1, A=1, Pr=7, b=1, n=12

2=0.25,1.25,25

Fig. 2. Influence of natural convection parameter \ over velocity profile

f' fordifferent Ec.

The behavior of boundary derivatives for velocity,
microrotation and temperature profiles is presented in
Tables.(1 — 3). The values are computed at the surface of the

stretching cylinder. Table.l contains the values of the
boundary derivatives for velocity profile that corresponds to

the shear stress at the surface of the cylinder 7. From

Table.1 it is noticed that with increase in the shear stress at
the surface decreases, whereas with increase in Reynolds
numbers shear stress increases. The computed vales of shear
stress are larger for strong concentration as compared with the
weak concentration situation. Table.2 is prepared for the
boundary derivatives of the micropolar velocity profile
calculated for different values of the involved parameters.

From Table.2 it is seen that with increase in K and A the
boundary derivatives increases. Table.3 shows the behavior

of surface heat flux ¢, computed for different values of the
involved parameters. From Table.3 it is clear that with
increase in K, g, increases, whereas with increase in Ec

and Pr heat flux at the surface decreases.

Re =2 2=05 A=1Pr=7 Ec=05 b=1

0.9+ 0.0 |/

0.8} 05 |/

07} ]
06l ]
Zosl

0.4f

0.3r

0.2r

1 15 2 25 3
n

Fig. 3. Influence of micropolar parameter K over velocity profile f' for
different n

Re=10, A=1, Pr=7, Ec=05 b=1 n=1/2

—x =05

A

15

K=3 15050

= 04}
=
0.2F
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0.2+ S
1 1.5 2 25 3
n

Fig. 4. Influence of micropolar parameter K over angular velocity profile
M for different .

K=05 =05 Pr=7 Ec=05 n=1/2

Fig. 5. Influence of micropolar parameter A over angular velocity profile
M for different Re.
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Fig. 6. Influence of micropolar parameter K over angular velocity profile

M for different Ec with n=20.
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Fig. 7. Influence of micropolar parameter Pr over angular velocity profile

M with n=20.
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Fig. 8. Influence of Prandtl numbers Pr over temperature profile 0 for

different Ec
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Fig. 9. Influence of Reynolds numbers Re over temperature profile 0 for

different K
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0.
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Fig. 10. Influence of Re and Pr over C, against K
A=05A=1FEc=05b=1n=1/2

05 1.0 15 20
Pr

Fig. 11. Influence of Re and Ec over Nu against Pr
A=05,K=1LN=1b=1n=1/2
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1.0,

Fig. 12. Stream lines pattern for K =0 in the (r, z) plane.
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Fig. 13. Stream lines pattern for K =2 in the (r, z) plane.
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Table 1. Absolute values of the boundary derivatives corresponding to the behavior of shear stress at the surface of the cylinder for different values of the involved
parameters when A=0.5A\=1,Pr=7,Ec=0.25b=1.

)
K\Re 0.2 0.5 1 5 15 50 100 200
0.00 0.9516 1.0148 1.1183 1.8106 2.9470 5.2398 7.3312 10.2564
0.25 0.9464 0.9980 1.0845 1.6952 2.7339 4.8464 6.7754 9.4741
0.50 0.9474 0.9906 1.0645 1.6105 2.5714 4.5436 6.3475 8.8726
o 1.00 0.9571 0.9891 1.0454 1.4943 2.3351 4.0965 5.7144 7.9828
I 1.50 0.9702 0.9952 1.0399 1.4187 2.1686 3.7742 5.2566 7.3383
o 2.00 0.9839 1.0040 1.0405 1.3661 2.0434 3.5263 4.9035 6.8404
0.00 0.9516 1.0148 1.1183 1.8106 2.9470 5.2398 7.3312 10.2564
0.25 0.9682 1.0199 1.1066 1.7180 2.7573 4.8704 6.7997 9.4987
- 0.50 0.9854 1.0290 1.1033 1.6503 2.6127 4.5859 6.3902 8.9158
S 1.00 1.0182 1.0511 1.1083 1.5602 2.4025 4.1652 5.7836 8.0525
I 1.50 1.0476 1.0736 1.1197 1.5026 2.2544 3.8613 5.3443 7.4263
= 2.00 1.0737 1.0949 1.1330 1.4637 2.1431 3.6273 5.0049 6.9423
[3] H. A. Attia, Heat transfer in a stagnation point flow of a
Table 2. Absolute values of the boundary derivatives of the angular velocity at micropolar fluid over a stretching surface with heat
the surface of the cylinder for different values of the involved parameters generation/absorption, Tamkang J. Sci. Eng. 9 (4) (2006)
when Re=10,A=1,Pr=7,Ec=0.25b=1, 299-305.
M@ [4] R.Nazar, A. Ishak, I. Pop, Unsteady boundary layer flow over a
MK 025 0.5 1 2 5 10 stretching sheet in a micropolar fluid, Int. J. Eng. App. Sci. 4 (7)
0.1  0.1221 02493 05104 1.0338 24761 44324 (2008) 406-410.
02 0125102542 05177 10433 24874 4.4434 [51 S. Nadeem, Abdul Rehman, K. Vajravelu, J. Lee, C. Lee,
0.5 0.1324  0.2667 0.5372 1.0700 2.5202 4.4758 Axisymmetric stagnation fl £ a micropolar nanofluid in a
ymmetric stagnation flow o cropo oflu
o 10 0l4l6 02832 05643 11095 25722 45286 moving cylinder, Math. Prob. Eng. Volume 2012 (2012),
20 01554 03086 0.6078 1.1768  2.6682  4.6303 Article ID 378259, 17 pages, doi:10.1155/2012/378259.
= 350 0.1858 0.3648 0.7066 1.3369 29179 49122
0.1  3.1257 33433 37506 44943 63981 8.9317 [6] S. Nadeem, N. S. Akbar, M. Y. Malik, Exact and numerical
02 31662 33789 3.7801 45177 64154 8.9455 solutions of a micropolar fluid in a vertical Annulus, Num.
05 32680 34715 38505 45833 64660 89863 Meth. Part. Diff. Equ. 26 (2010) 1660-1674.
& 10 34051 35977 39721 46810 65459  9.0526 [7] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic stagnation
g 20 36175  3.7981 41568  4.8490  6.6932  9.1799 point flow towards a stretching vertical sheet in a micropolar
= 5.0 4.0974 4.2525 45821 52508 7.0752  9.5312 fluid, Magnetohydrodynamics, 43 (1) (2007) 83-97.
Table 3. Behavior of heat flux at the surface of the cylinder for different values [8] A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching
of the involved parameters when Re=10,A=0.5,A=1,b=1n=1/2 surface with variable surface heat flux in micropolar fluids,
Phys. Lett. A, 372 (2008) 559-561.
-6’'()
K\Pr 02 0.72 7 10 20 [9] S. Nadeem, M. Hussain, M. Naz, MHD Stagnation flow of a
0.0 3.4686 33457 2.0113 1.4588 0.0701 micropolar fluid through porous medium, Meccanica 45 (2010)
0.5 35528 34466 22707 17711 03452 869-830.
cl(i 1.0 3.6083 3.5131 2.4437 1.9812 0.6321 . . .
S s 36478 35603 25682 21335 0.8447 [10] S. Nadeem, S. Abbasbandyz M. Hussalp, Series solutlons. of
[ 2.0 3.6775 3.5058 26625 2.2495 1.0095 bogndary layer ﬂow qf a Mlcropolar ﬂL}ld near the stagnation
8 50 37676 37033 2.9520 2.6092 15372 point towards a shrinking sheet, Zeitschrift fur Naturforschung.
00 34211 31881 07940 00702  0.0098 64a (2009) 575-582.
= 05 35118 33100 1.1594 03452 0.1412 [11] N. Bachok, A. Ishak, Flow and heat transfer over a stretching
) 1.0 3.5715 3.3901 1.4079 0.6321 0.4479 . j K .
S s 36141 34472 15808 0.8448 0.6251 cylinder w1th presc'rlbed surface heat flux, Malaysian Journal
a0 3.6460 3.4900 1.7293 1.0096 0.9395 of Mathematical Sciences 4 (2) (2010) 159-169.
g 50 3.7429 3.6197 2aleiie ol i, [12] T. G. Fang, J. Zhang, Y. F. Zhong, H. Tao, Unsteady viscous
flow over an expanding stretching cylinder, Chin. Phys. Lett.
28 (12) (2011) 124707-1-4.
References [13] T. Fang, S. Yao, Viscous swirling flow over a stretching
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