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Abstract: The current paper offers an analysis of the steady boundary layer flow and heat transfer of a non-Newtonian 

micropolar fluid flowing through a vertical exponentially stretching cylinder along its axial axis. The obtained system of 

nonlinear partial differential equations along with the appropriate boundary conditions is abridged to dimensionless form by 

means of the boundary layer estimates and a suitable similarity transformation. The subsequent nonlinear coupled system of 

ordinary differential equations subject to the appropriate boundary conditions is solved numerically with the help of Keller-box 

method. The effects of the involved parameters are presented through graphs. The allied physical features for the flow and heat 

transfer characteristics that is the skinfriction coefficient and Nusselt numbers are presented for different parameters. 
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1. Introduction 

The fundamental idea about the micropolar fluid was given 

by Egingen [1] because the Newtonian fluid theory does not 

exhibits all the properties of some complex nature fluids like 

liquid crystals, suspensions containing micro size particles, 

lubricants are a few particular examples of micropolar fluids. 

The idea was to make use of the law of conservation of 

angular momentum along with the conservation of mass and 

linear momentum. In recent years many researchers have 

discussed the study of micropolar fluids for different 

geometries and various situations due to its real world 

applications. Rosali et al [2] have prescribed the behavior of 

micropolar fluids flowing towards a permeable stretching 

sheet immersed in a porous medium and the fluid flow was 

assumed to be effected via suction through the surface of the 

sheet. The problem of heat generation or absorption effects 

over the heat transfer and stagnation-point fluid flow of a 

micropolar fluid flowing over a stretching surface is presented 

by Attia [3]. His effort indicated that the micropolar fluid 

parameter effects over flow and heat transfer depends upon the 

stretching velocity magnitude. Further, Nazar et al [4] have 

analyzed the problem of unsteady, boundary layer, 

incompressible flow of a micropolar fluid over a stretching 

sheet. Moreover, Nadeem et al [5] have provided the 

analytical analysis of the problem of axisymmetric stagnation 

flow of a micropolar nanofluid in a moving cylinder. The fluid 

flow was assumed to be through the annular region between 

the two concentric cylinders. In another work, Nadeem et al [6] 

have inspected the influence of micropolar fluid flow in a 

vertical annulus. Few other interesting works concerning the 

micropolar fluid flow for different geometries are referred in 

[7-10]. 

Fluid flow over a cylinder that is stretched linearly along its 

axial direction has gained much attention in recent years. 

Bachok and Ishak [11] have tackled the problem of laminar 

flow of an incompressible viscous fluid flow over a stretching 

cylinder with prescribed surface heat flux. In a fresh attempt, 

Gang et al [12] have debated the problem of unsteady viscous 

fluid flowing over a stretching cylinder. In another work, Fag 

and Yao [13] have discussed the viscous swirling flow over a 

stretching cylinder. Recently, Wang [14] has communicated 

the influence of natural convection heat transfer over a vertical 

stretching cylinder. Few pertinent works concerning the 

boundary layer flow over stretching surfaces are cited in 

[15-21]. The determination of the contemporary effort is to 
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provide a numerical solution for the flow of a non-Newtonian 

micropolar fluid flowing over a vertical cylinder that is 

stretched exponentially along the axial direction taking into 

account the dissipation effects. The numerical solutions are 

computed by applying the second order finite difference 

scheme, known as the Keller-box technique. The influence of 

involved parameters is graphed in the results and discussion 

section. The important physical features associated with the 

problem like the skinfriction coefficient and the local Nusselt 

numbers are discussed at the end. 

2. Formulation 

Consider the problem of mixed convection boundary layer 

flow of a viscous fluid flowing over a vertical circular cylinder 

of radius a. The cylinder is assumed to be stretching 

exponentially along the axial direction with velocity .
w
U  The 

temperature at the surface of the cylinder is assumed to be a 

constant T
∞

and the uniform ambient temperature is taken to 

be T
∞

 such that the quantity 0
w
T T

∞
− >  in case of the 

assisting flow, while 0
w
T T

∞
− <  in case of the opposing 

flow, respectively. Under these assumptions the boundary 

layer equations of motion and heat transfer are 
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where the velocity components along the ( ),r z  axes are 

( ),u w , ρ  is density, ν is the kinematic viscosity, p  is 

pressure, g  is the gravitational acceleration along the z −

direction, β  is the coefficient of thermal expansion, N  is 

the angular velocity, K  is the micropolar parameter, γ  is 

the micropolar constant, j  is the microrotation density, T  

is the temperature, α  is the thermal diffusivity and 
p
c  is the 

specific heat at constant pressure. The corresponding 

boundary conditions for the problem are 

( , ) 0,  ( , ) , ( , ) 0 as ,
w

u a z w a z U w r z r= = → →∞   (5) 

( , ) ( ) | ,    ( , ) 0 as ,
z r r a

N a x n u w N r z r
→

= − → →∞   (6) 

( )( , ) ,     ( , )  as ,
w

T a z T z T r z T r
∞

= → →∞    (7) 

where /2 z a

w
U ake=  is the fluid velocity at the surface of the 

cylinder. 

3. Solution of the Problem 

Introduce the following similarity transformations: 

( )/ /( )
,  2 ,z a z af

u ake w ake f
η

η
η

′= − =      (8) 

2
/

2

( )
,  ,  ,z a

w

T TM r
N ke

T T a

η
θ η

η

∞

∞

−
= = =

−
  (9) 

where the characteristic temperature difference is calculated 

from the relations / .z a

w
T T ce

∞
− =  With the help of 

transformations ( )6  and ( )7 , .Eqs  ( )1  to ( )3  take the 

form 

2(1 )( ) Re( ) Re 0,
4

K
K f f ff f Mη λθ′′′′ ′′ ′′ ′+ + + − + + = (10) 

Re Re
( ) (2 ) 0,

2

bK
M fM f M fM f Mη η

η
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Λ Λ Λ

(11) 

2RePr( ) Pr 0,f f Ec fηθ θ θ θ η ′′′′ ′ ′ ′+ + − + =      (12) 

in which Re / 4
w

aU ν=  is the Reynolds number, K is the 

micropolar parameter, 2( ) /
w w

g a T T Uλ β
∞

= −  is the 

natural convection parameter, and 2 / 2b a j=  are the 

micropolar coefficients, Pr /v α=  is the Prandtl number 

and 
2 / ( )
w p w

Ec U c T T
∞

= −  is the Eckert number. The 

boundary conditions in nondimensional form become 

( ) ( )1 0,   1 1,     0,  as ,f f f η′ ′= = → → ∞   (13) 

( )1 4 (1),      0,  as ,M nf M η′′= − → → ∞    (14) 

( )1 1,      0,  as .θ θ η= → →∞              (15) 

The important physical quantities such as the shear stress at the 

surface ,
w
τ  the skinfriction coefficient ,

f
c  the heat flux at the 

surface of the cylinder 
w
q  and the local Nusselt number Nu  are 

( )| ,   Re 1 ,
w rz r a f

c fτ τ
=

′′= =          (16) 

( )0
|  / Re 1 .

w r r a
q k T Nu θ

=
′= − = −     (17) 

The solution of .(10 12)Eqs −  subject to the boundary 

conditions (13 15)−  is obtained through the highly 
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sufficient second order numerical scheme called the 

Keller-box technique. To develop the technique, the system of 

differential equations (10 12)−  along with the boundary 

conditions ( )13 15−  is converted into a first order 

differential system by choosing 

1 2 1 3 4
,   ,   ,   ,F f F F F M F θ′′ ′ ′= = = =      (18) 

the resulting system can be stated now as 

2

2 2 2 1 3
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with the boundary conditions 

(1) 0,  (1) 1,   0,  as ,f u u η= = → →∞     (22) 

(1) 4 (1),   0,  as ,M nf θ η′′= − → →∞         (23) 

(1) 1,   0,  as ,θ θ η= → → ∞            (24) 

Further details of the numeric solution can be found in 

references [22-25]. The detailed discussion about the obtained 

numeric solutions is presented in the next section. 

4. Results and Discussion 

The present work is an effort to provide a numerical scheme 

that gives the solution of the problem of natural convection 

boundary layer flow of a non-Newtonian micropolar fluid 

flowing over a vertical cylinder that is stretched exponentially 

along its axial axis. The numerical solutions of the problem 

are computed using the second order implicit finite difference 

scheme called the Keller-box method. The influence of the 

involved parameters is presented both graphically and in 

tabulated form in this section. The solutions are computed for 

both strong concentration ( )1 / 2n =  and weak 

concentration ( )0n =  of the angular velocity at the surface 

of the stretching cylinder. .1Fig  displays the influence of 

velocity profile f ′  for different combinations of Reynolds 

numbers Re  and the micropolar parameter ,K  for fixed 

values of the other parameters. The solutions in .1Fig are 

curved for strong concentration case and the range of 

Reynolds numbers is chosen up to Re 20000=  (such high 

values of Re  corresponds to turbulent flows). From .1Fig , 

it clicks that with the increase in Re  the velocity profile 

decreases whereas with increase in K  the velocity profile 

increases. .2Fig  is graphed to observe the impact of natural 

convection parameter λ  and the Eckert number .Ec  From 

.2Fig  it is observed that with increase in both λ  and Ec  

the velocity profile increases. This strengthen the observation 

that enhanced natural convection parameter λ  requires 

higher density difference in fluid that in return requests 

increase in fluid velocity. It is also noticed from .2Fig  that 

the influence of natural convection parameter is more 

significant for higher values of Eckert numbers. .3Fig  

conveys the behavior of velocity profile f ′  plotted for 

different values of micropolar parameter K  for both the 

strong and weak concentration cases. From .3Fig  it is 

noticed that the velocity profile f ′  has larger values for 

strong concentration as compared with the weak concentration 

situation. The pattern adopted by the non-dimensional angular 

velocity profile ( )M η  is presented for strong concentration 

in .(4 5)Figs −  for different combinations of involved 

parameters. .4Fig  gives the impact of micropolar parameter 

K  and natural convection parameter λ  over the micropolar 

velocity profile .M  From .4Fig  it is noted that with 

increase in both K  and λ  the micropolar velocity profile 

M  decreases. .5Fig  predicts the impact of micropolar 

coefficient Λ  and the Reynolds numbers Re  for the 

micropolar velocity M .  From .5Fig  it is witnessed that 

with increase in the micropolar velocity profile increases, 

whereas with increase in Re  the micropolar velocity profile 

M  decreases. The imprint of micropolar parameter ,K  

Eckert numbers Ec  and Prandtl numbers Pr  over the 

non-dimensional micropolar velocity function is portrayed in 

.(6 7)Figs −  for the weak concentration case. .6Fig  

inculcates the imprint of micropolar velocity for different 

pairs of the micropolar parameter K  and the Eckert numbers 

.Ec  From .6Fig  it is observed that with increase in both K  

and λ  the angular velocity profile decreases. It is also 

noticed from .6Fig  that the influence of K  is significant 

for large values of the Eckert numbers .Ec  .7Fig  is 

sketched to observe the impact of Prandtl numbers Pr  up to 

Pr 50=  over the micropolar velocity profile Λ  From 

.7Fig  it is observed that with increase in Pr  the angular 

velocity profile decreases. The behavior of non-dimensional 

velocity profile is plotted in .(8 9)Figs −  for different 

combinations of Prandtl numbers, Eckert numbers, Reynolds 

numbers and micropolar parameter. .8Fig  contains the 

curves predicting the influence of Pr  and Ec  over the 

temperature profile θ  From .8Fig  it is noted that with 

increase in both Pr  and Ec  the temperature profile 

decreases. .9Fig  shows the impact of K  and Re  over the 

temperature profile θ  for Reynolds numbers up to 

Re 5000= . From .9Fig  it is observed that with increase in 

both K  and Re  the temperature profile and the thermal 

boundary layer thickness decays. The behavior of skinfriction 

coefficient fc  for different Prandtl numbers and Reynolds 

numbers is shown in .10Fig  plotted against micropolar 

parameter .K  From the observed graph it is noted that with 

increase in all Re,Pr  and K  the skinfriction coefficient 
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increases. The pattern adopted by the local Nusselt numbers 

Nu  for different Eckert numbers and Reynolds numbers 

curved against Prandtl numbers is presented in .11.Fig  From 

.11Fig  it is observed that with increase in all the ,PrEc  and 

Re  the local Nusselt numbers increases. .(12 13)Figs −  

shows the streamlines for the fluid flow sketched in the ( ),r z  

plane graphed for different .K  The decaying pattern 

observed is slower for small values of .K  

 

Fig. 1. Influence of Reynolds numbers Re  over velocity profile f ′  for 

different K . 

 

Fig. 2. Influence of natural convection parameter λ  over velocity profile 

f ′  for different Ec . 

The behavior of boundary derivatives for velocity, 

microrotation and temperature profiles is presented in 

.(1 3).Tables −  The values are computed at the surface of the 

stretching cylinder. .1Table  contains the values of the 

boundary derivatives for velocity profile that corresponds to 

the shear stress at the surface of the cylinder .wτ  From 

.1Table  it is noticed that with increase in the shear stress at 

the surface decreases, whereas with increase in Reynolds 

numbers shear stress increases. The computed vales of shear 

stress are larger for strong concentration as compared with the 

weak concentration situation. .2Table  is prepared for the 

boundary derivatives of the micropolar velocity profile 

calculated for different values of the involved parameters. 

From .2Table  it is seen that with increase in K  and λ  the 

boundary derivatives increases. .3Table  shows the behavior 

of surface heat flux 
w
q  computed for different values of the 

involved parameters. From .3Table  it is clear that with 

increase in ,K  
w
q  increases, whereas with increase in Ec  

and Pr  heat flux at the surface decreases. 

 

Fig. 3. Influence of micropolar parameter K  over velocity profile f ′  for 

different n  

 

Fig. 4. Influence of micropolar parameter K  over angular velocity profile 

M  for different λ . 

 

Fig. 5. Influence of micropolar parameter Λ  over angular velocity profile 

M  for different Re . 
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Fig. 6. Influence of micropolar parameter K  over angular velocity profile 

M  for different Ec  with 0n = . 

 

Fig. 7. Influence of micropolar parameter Pr  over angular velocity profile 

M  with 0n = . 

 

Fig. 8. Influence of Prandtl numbers Pr  over temperature profile θ  for 

different Ec  

 

Fig. 9. Influence of Reynolds numbers Re  over temperature profile θ  for 

different K  

 

Fig. 10. Influence of Re  and Pr  over 
f
C  against K  for 

0.5, 1, 0.5, 1, 1 / 2Ec b nλ = Λ = = = =  

 

Fig. 11. Influence of Re  and Ec  over Nu  against Pr  for 

0.5,K 1, 1,b 1,n 1 / 2λ Λ= = = = =
.
 

 

Fig. 12. Stream lines pattern for 0K =  in the ( ),r z  plane. 

 

Fig. 13. Stream lines pattern for 2K =  in the ( ),r z  plane. 
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Table 1. Absolute values of the boundary derivatives corresponding to the behavior of shear stress at the surface of the cylinder for different values of the involved 

parameters when 0.5. 1, Pr 7, 0.25, 1Ec bλ = Λ = = = = . 

 
 f´´(1) 

K\Re 0.2 0.5 1 5 15 50 100 200 

n
  

=
  

0
 

0.00 0.9516 1.0148 1.1183 1.8106 2.9470 5.2398 7.3312 10.2564 

0.25 0.9464 0.9980 1.0845 1.6952 2.7339 4.8464 6.7754 9.4741 

0.50 0.9474 0.9906 1.0645 1.6105 2.5714 4.5436 6.3475 8.8726 

1.00 0.9571 0.9891 1.0454 1.4943 2.3351 4.0965 5.7144 7.9828 

1.50 0.9702 0.9952 1.0399 1.4187 2.1686 3.7742 5.2566 7.3383 

2.00 0.9839 1.0040 1.0405 1.3661 2.0434 3.5263 4.9035 6.8404 

n
  

=
  

0
.5

 

0.00 0.9516 1.0148 1.1183 1.8106 2.9470 5.2398 7.3312 10.2564 

0.25 0.9682 1.0199 1.1066 1.7180 2.7573 4.8704 6.7997 9.4987 

0.50 0.9854 1.0290 1.1033 1.6503 2.6127 4.5859 6.3902 8.9158 

1.00 1.0182 1.0511 1.1083 1.5602 2.4025 4.1652 5.7836 8.0525 

1.50 1.0476 1.0736 1.1197 1.5026 2.2544 3.8613 5.3443 7.4263 

2.00 1.0737 1.0949 1.1330 1.4637 2.1431 3.6273 5.0049 6.9423 

 

Table 2. Absolute values of the boundary derivatives of the angular velocity at 

the surface of the cylinder for different values of the involved parameters 

when Re 10, 1, Pr 7, 0.25, 1Ec b= Λ = = = = . 

 
 M´(1) 

λ\K 0.25 0.5 1 2 5 10 

n
  

=
  

0
 

0.1 0.1221 0.2493 0.5104 1.0338 2.4761 4.4324 

0.2 0.1251 0.2542 0.5177 1.0433 2.4874 4.4434 

0.5 0.1324 0.2667 0.5372 1.0700 2.5202 4.4758 

1.0 0.1416 0.2832 0.5643 1.1095 2.5722 4.5286 

2.0 0.1554 0.3086 0.6078 1.1768 2.6682 4.6303 

5.0 0.1858 0.3648 0.7066 1.3369 2.9179 4.9122 

n
  

=
  

0
.5

 

0.1 3.1257 3.3433 3.7506 4.4943 6.3981 8.9317 

0.2 3.1662 3.3789 3.7801 4.5177 6.4154 8.9455 

0.5 3.2689 3.4715 3.8595 4.5833 6.4660 8.9863 

1.0 3.4051 3.5977 3.9721 4.6810 6.5459 9.0526 

2.0 3.6175 3.7981 4.1568 4.8490 6.6932 9.1799 

5.0 4.0974 4.2525 4.5821 5.2508 7.0752 9.5312 

Table 3. Behavior of heat flux at the surface of the cylinder for different values 

of the involved parameters when Re 10, 0.5, 1, 1, 1 / 2b nλ= = Λ = = = . 

 
 -ϴ´(1) 

K\Pr 0.2 0.72 7 10 20 

E
c 

 =
  

0
.2

5
 

0.0 3.4686 3.3457 2.0113 1.4588 0.0701 

0.5 3.5528 3.4466 2.2707 1.7711 0.3452 

1.0 3.6083 3.5131 2.4437 1.9812 0.6321 

1.5 3.6478 3.5603 2.5682 2.1335 0.8447 

2.0 3.6775 3.5958 2.6625 2.2495 1.0095 

5.0 3.7676 3.7033 2.9520 2.6092 1.5372 

E
c 

 =
  

0
.5

0
 

0.0 3.4211 3.1881 0.7940 0.0702 0.0098 

0.5 3.5118 3.3100 1.1594 0.3452 0.1412 

1.0 3.5715 3.3901 1.4079 0.6321 0.4479 

1.5 3.6141 3.4472 1.5898 0.8448 0.6251 

2.0 3.6460 3.4900 1.7293 1.0096 0.9395 

5.0 3.7429 3.6197 2.1676 1.5371 1.3104 
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