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Abstract: The simplest equation method with the Burgers’ equation as the simplest equation is used to handle two completely 

integrable equations, the KdV equation and the potential KdV equation. The general forms of the multiple-soliton solutions are 

formally established. It is shown that the simplest equation method may provide us with a straightforward and effective 

mathematic tool for generating multiple-soliton solutions of nonlinear wave equations in fluid mechanics. 
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1. Instruction 

It is well known that the nonlinear physical phenomena are 

related to nonlinear partial differential equations which are 

involved in many fields such as physics, chemistry, mechanics, 

etc. As mathematical models of the phenomena, the 

investigation of exact solutions of the partial differential 

equations will help one to understand these phenomena better. 

In recent years, many powerful methods to construct exact 

solutions of nonlinear partial differential equations have been 

established and developed. Among these are the modified 

extended tanh-function method [1], the Exp-function method 

[2-3], the tanh-coth method [4], sine-cosine method [5], 

Hirota’s direct method [6-7], the F-expansion method [8], the 

-expansion method [9], and the simplest equation method 

[10-16]. 

The above methods can be used to handle the 
nonlinear wave equations for single soliton solutions, 
and Guo et al. [17] think the multiple-soliton solutions 
of the nonlinear wave equations can be obtained only by 
three well-known methods [17]: the inverse scattering 
method, the Backlund transformation method, and the 
Hirota method. However, we find that the simplest 
equation method with the Burgers’ equation as the 
simplest equation is ideal for the determination of 
multiple-soliton solutions for a wide class of the 

nonlinear wave equation. 
In this paper, we present the simplest equation method 

to construct the multiple-soliton solutions for the KdV 

equation and the potential KdV equation [18]. 

The rest of this paper is organized as follows. In Section 2, 

the simplest equation method for finding multiple-soliton 

solutions of the nonlinear wave equation is described. In 

Section 3, the method to solve the KdV equation and the 

potential KdV equation is illustrated in detail. The general 

forms of the multiple-soliton solutions are obtained. In 

Section 4, some conclusions are given. 

2. The Simplest Equation Method 

Let us have a partial differential equation and let by means 

of an appropriate ansatz this equation be reduced to a 

nonlinear ordinary differential equation (ODE) 

.          (2.1) 

For large class of equations from the kind (2.1) exact 

solution can be constructed as finite series 

G
G′

0,...,),(
2

2

=














ξξ
ξ

d

Fd

d

dF
FP



332 Sen-Yung Lee and Chun-Ku Kuo:  The General Forms of the Multiple-Soliton Solutions for the Completely Integrable  

Equations by Using the Simplest Equation Method 

,                (2.2) 

where ai are constants to be determined; Y is the exact 

solution of some ordinary differential equation referred to as 

the simplest equation; and,  is a constant to be determined 

and the power of the specified solution function finite series, 

Y. The simplest equation is of lesser order than equation (2.1) 

and we know the general solution of the simplest equation or 

we know at least exact analytical particular solutions of the 

simplest equation [11]. 

The application of the simplest equation method is based 

on the following steps. 

1. By means of the traveling wave ansatz the solved class 

of nonlinear partial differential equation (NPDE) is 

reduced to a class of nonlinear ODEs of the kind 

equation (2.1). 

2. The finite-series solution (2.2) is substituted in (2.1) 

and as a result a polynomial of  is obtained. 

Equation (2.2) is a solution of (2.1) if all coefficients 

of the obtained polynomial of  are equal to 

zero. 

3. By means of a balance equation one ensures that there 

are at least two terms in the coefficient of the highest 

power of . The balance equation gives a 

relationship between the parameters of the solved class 

of equations and the parameters of the solution. 

4. The application of the balance equation and equalizing 

the coefficients of the polynomial of  to zero 

leads to a system of nonlinear relationships among the 

parameters of the solution and the parameters of the 

solved class of equation. 

5. Each solution of the obtained system of nonlinear 

algebraic equations leads to a solution of a nonlinear 

PDE from the investigated class of nonlinear PDEs. 

In order to construct the multiple-soliton solutions for the 

investigated class of nonlinear PDEs, the Burgers’ equation 

is chosen as the simplest equation due to that it is a 

completely integrable equation [4, 18]. 

Consider the Burgers’ equation 

,             (2.3) 

where  is an arbitrary nonlinear coefficient. The 

multiple-soliton solutions of equation (2.3) is [18] 

.                (2.4) 

The traveling wave ansatz is , so that 

. The Burgers’ equation (2.3) is thus 

transformed into 

.            (2.5) 

Integrating equation (2.5) once with respect to , and 

making the integral constant to zero, it becomes 

.               (2.6) 

It is well known that dispersion relation of the equation (2.3) 

is 

,                   (2.7) 

Therefore, equation (2.6) is rewritten as 

,                (2.8) 

and its general form of N-soliton solution is 

.             (2.9) 

Equation (2.8) is the final form of the simplest equation 

which will be used to construct the multiple-soliton solutions 

for the investigated class of nonlinear PDEs. 

3. Application 

3.1. The General Form of the Multiple-Soliton Solutions for 

the KdV Equation 

Consider the KdV equation [18] 

,            (3.1) 

where  is an arbitrary nonlinear coefficient. 

Use the traveling wave ansatz  to transform 

equation (3.1) into 

.           (3.2) 

Integrating equation (3.2) once with respect to , and 

making the integral constant to zero, it becomes 

.            (3.3) 

Substituting equations (2.2) and (2.8) into (3.3) and by 

means of the balance equation gives 

.                (3.4) 

Equation (3.4) yields . Therefore, the exact solution 

of equation (3.3) is assumed as 

.           (3.5) 

Substituting equations (2.8) and (3.5) into (3.3), and setting 

like power coefficient of  to zero, leads a system of 
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nonlinear relationship among the parameters of the solution 

and the parameters of the solved equation class 

,            (3.6) 

,        (3.7) 

, (3.8) 

,   (3.9) 

.       (3.10) 

Solving equations (3.6-10) yields 

            (3.11) 

As a result the general form of N-soliton solutions is 

derived as 

   (3.12) 

For the one-soliton solution and setting , equation 

(3.12) is the same as the result in Wazwaz’s book [18] 

.               (3.13) 

3.2. The General Form of the Multiple-Soliton Solutions for 

the Potential KdV Equation 

Consider the potential KdV equation [18] 

,               (3.14) 

where  is an arbitrary nonlinear coefficient. 

Use the traveling wave ansatz  to transform 

equation (3.14) into 

.         (3.15) 

Substituting equations (2.2) and (2.8) into (3.15) and 

processing as before we have . Therefore, the exact 

solution of equation (3.15) is assumed as 

.              (3.16) 

Substituting equations (2.8) and (3.16) into (3.15), and 

setting like power coefficient of  to zero, leads a system of 

nonlinear relationship among the parameters of the solution 

and the parameters of the solved equation class 

,              (3.17) 

,        (3.18) 

,           (3.19) 

.            (3.20) 

Solving equations (3.17-20) yields 

                   (3.21) 

Here  is an arbitrary constant, setting . 

As a result the general form of N-soliton solutions is 

derived as 

          (3.22) 

For the one-soliton solution and setting , equation 

(3.22) is the same as the result in Wazwaz’s book [18] 

          (3.23) 

Up to now, two completely intrgrable equations are solved 

by the simplest equation method with the Burgers’ equation as 

the simplest equation. 

4. Conclusions 

In this paper, we have presented a concise method to 

handle two completely integrable equations, the KdV 

equation and the potential KdV equation. The general forms 

of the multiple-soliton solutions are formally derived. Not 

like the inverse scattering method, the Backlund 

transformation method, and the Hirota method, the results 

confirm the simplest equation method is concise and direct 
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for constructing multiple-soliton solutions. Therefore, we 

believe that multiple-soliton solutions existing for other 

classes of nonlinear mathematic physics models are easily 

solved. Further work on these aspects is worthy of 

performing. 
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