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Abstract: This paper presents the basis and validation of the Taylor-SPH meshless method formulated in terms of stresses 

and velocities which can be applied to Solid Dynamic problems. The proposed method consists of applying first the time 

discretization by means of a Taylor series expansion in two steps and a corrected SPH method for the space discretization. In 

order to avoid numerical instabilities, two different sets of particles are used in the time discretization. To validate the Taylor-

SPH method, it has been applied to solve the propagation of shock waves in elastic materials and the results have been 

compared with those obtained with a corrected SPH discretization combined with a 4
th

 order Runge-Kutta time integration. 

The Taylor-SPH method is shown to be stable, robust and efficient and it provides more accurate results than those obtained 

with the standard SPH along with the Runge-Kutta time integration scheme. Numerical dispersion and diffusion are eliminated 

and only a reduced number of particles is required to obtain accurate results.  
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1. Introduction  

Mesh based numerical methods, such as the Finite Element 

Method (FEM), have been widely used to solve Solid 

Mechanics problems. Despite of their great success, mesh 

based numerical methods suffer from some difficulties when 

dealing with problems where large deformations, 

discontinuities and crack propagation are involved.  

To overcome these difficulties, some meshfree methods 

were developed in the past. They are based on constructing 

approximating functions at arbitrary discrete points in the 

domain, and, as a consequence, the need for a mesh is 

eliminated. One example of meshfree method is the 

Smoothed Particle Hydrodynamics (SPH). The SPH method 

was developed in 1977 by Lucy [12] and Gingold and 

Monaghan [7] to be applied in Astrophysics. In 1991, it was 

extended to solve problems in Solid Mechanics where 

traditionally FEM fails [10]. 

It is well known that the original SPH method suffers from 

tensile instabilities [22] and lack of consistency [2]. Over the 

past years, different corrections have been introduced to 

improve the accuracy of the SPH solution. Liu et al [11] 

proposed a correction function that restores the first order 

completeness of the kernel function. Some years later, 

Randles and Libersky [20] developed a transformation of the 

gradient that provides the correct values of the strains for 

linear fields; this normalization of the gradient is a 

generalization of the work proposed before by Johnson and 

Bessel [9].  

To solve the tensile instability, Dyka et al [5] [6] 

introduced the stress point method into SPH. This approach 

was later extended to higher dimensions by Randles et al. 

[21]. Belytschko et al. [1] showed that the stress point 

technique stabilizes SPH by removing the instability that 

arises due to rank deficiency, i.e. spurious singular modes, 

while tensile instabilities can be avoided by using a 

Lagrangian kernel. Other recent studies to improve the 

convergence of the SPH method can be found in [2][3] 

[19][23]. 

Modelling of shock waves propagation in solids is most 

demanding area since a wide variety of problems are 

encountered. Even in the linear range, the short wavelengths 

are subjected to numerical damping and dispersion. The 

shocks are smoothed and leading or trailing oscillations 

appear. The situation is more involved in the non-linear 

regime, where strain can localize along shear bands which 

may be affected by the mesh if FEM is used in the analysis.  

The key advantage of using SPH is that the absence of a 

mesh enables it to deal with larger local distortion than Finite 

Element Methods, and therefore phenomena such as fracture, 
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and other material instabilities are more easily modelled. In 

addition to that, mesh dependence problems such as mesh 

alignment or mesh size dependence, are solved in a 

straightforward manner, given the meshfree nature of the 

method. 

Nevertheless, the SPH method still presents several 

difficulties when dealing with dynamics and shock wave 

propagation: numerical damping, depending on relative 

wavelengths, and numerical dispersion, consisting of short 

waves propagating faster or slower and causing oscillations 

close to the front. 

The authors of the present paper have published in 

previous works some different alternatives to solve the 

propagation of shock waves in solids using FEM 

[13][14][15]. In Solid Dynamics, the classical approach of 

numerical analysis is based on a displacement formulation 

using the Newmark scheme. It is well established that the 

Newmark family of methods is not suitable to solve 

discontinuous phenomena, and many efforts have been 

devoted in the past to solve this problem. The shortcomings 

of the classical approach can be classified in: (a) Numerical 

damping and numerical dispersion; (b) In classical 

displacement formulations low-order elements cannot be 

used as they are not accurate and the results depend on mesh 

alignment and mesh size. To solve the problems mentioned in 

(b) the authors have proposed in previous works a numerical 

model formulated in terms of stress and velocity based on a 

Taylor–Galerkin scheme. This method has been proved to 

perform well for localized failure of viscoplastic materials of 

Von Mises type. It was shown that low-order elements, such 

as linear triangles, exhibited an excellent behaviour and 

reasonably numerical diffusion and dispersion. 

In this paper, a new meshfree method (Taylor-SPH) for 

solving the propagation of shock waves in linear or non-

linear media is presented. It uses a two-steps time 

discretization algorithm by means of a Taylor series 

expansion and a corrected SPH method for the spatial 

discretization. In order to avoid numerical instabilities, two 

different sets of particles are considered to perform the time 

discretization and a Lagrangian kernel is used. Both, 

Lagrangian kernel and its gradient, are corrected to satisfy 

the consistency conditions. 

In order to validate the proposed method, the same 

problem of a shock wave propagating in an elastic material is 

solved using the 4
th

 order Runge Kutta time integration 

scheme combined with a corrected SPH for the space 

discretization. 

The purpose of this paper is to show how the proposed 

Taylor-SPH method provides solutions of more accuracy than 

those obtained with classical SPH methods. 

The paper is organized as follows. First, the governing 

equations for dynamic problems in elastic media are given in 

terms of stress and velocity. In Section 3.1, equations are 

discretized using the proposed Taylor-SPH method. In 

Section 3.2, the partial differential equations are discretized 

using the 4
th

 order Runge Kutta time integration combined 

with corrected SPH method. To assess the performance of the 

proposed method, some numerical applications in 1D and 2D 

are described in Section 4.  

2. Governing Equations 

Consider a linear elastic domain 
nIRΩ ⊂ for 1 3n≤ ≤  

with boundary
vσ∂Ω = ∂Ω ∪ ∂Ω . The governing equations 

are written in terms of stress and velocity. Prescribed stress 

and velocity are imposed on σ∂Ω  and 
v

∂Ω  respectively. 

Neglecting the body forces, and for small strains, the 

governing equations can be written as  

T

v

0

                     in  x

                              on   x IR

                           on   x IR

                          in  ot

  IR
t

σ

ρ +

+

+

=

∂= Ω
∂

= ∂Ω

= ∂Ω
= Ω

v
S σ

v v

σ σ
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            (1) 

where σ is the stress tensor, ρ the density and v the velocity 

vector. 

; and
o

v σ v  are given functions.  

In 2D problems, the differential operator S is defined as  

0

0

x

y

y x

 ∂
 = ∂ 
 ∂ ∂ 

S                                          (2) 

being ;x y
x y

∂ ∂∂ = ∂ =
∂ ∂

. 

The equation (1) has to be completed by a constitutive 

equation which gives the relation between the stress and the 

strain tensors. Here, the material behaviour is assumed to be 

elastic. In 2D problems, the constitutive equation is written 

as  

:e=σ D εɺ ɺ                                         (3) 

In the case of 2D plane stress problems, the elastic matrix 

is given by 

2

1 0

1 0
1

1
0 0

2

e E
ν

ν
ν

ν

 
 
 

=  −  −
 
 

D                                (4) 

where E is the elastic modulus and ν is the Poisson's 

coefficients. 

In small strain analysis, the rate of strain tensor is related 

to the gradient of velocity as 

=ε Svɺ                                          (5) 

being S the differential operator defined in (2). 

Finally, the governing equations of the problem can be 

written as 
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:

1

e

T

ρ

 =

 =


σ D Sv

v S σ

ɺ

ɺ
                                  (6) 

For 2D plane stress problems, equations (6) can be written 

as 
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                (7) 

where Dij are the components of the plane stress elastic 

matrix.  

The system of equations (7) can be written in a 

conservation form as 

. 0
t

∂ + ∇ =
∂
U

F                                     (8) 

where 

11 12

12 22

11 22 12 1 2

11 1 12 1 33 2

12 2 22 2 33 1

( )
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( )

T

T

x

T

y
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σ σ
ρ ρ

σ σ
ρ ρ

σ σ σ=

= − − − − −

= − − − − −

U

F

F

      (9) 

being U the unknown vector and F the flux vector. 

It can be seen that equation (8) represents a system of first 

order hyperbolic equations. 

It is interesting to note that in 1D problem, equations (7) 

can be written as 

0
0

1
0 0

E

v vt x

σ σ

ρ

− 
     ∂ ∂ + =      −∂ ∂      

 

             (10) 

The velocity of wave propagation is given by Ec ρ= ± , 

which correspond to two waves propagating in opposite 

directions. 

3. Numerical Discretization 

To solve numerically the system of partial differential 

equations (8), the traditional SPH method applies first the 

SPH spatial discretization, obtaining a set of simultaneous 

ordinary differential equations with respect to time, and this 

set of equations is then integrated in time using one of the 

standard techniques such as Euler, predictor-corrector or one 

of the Runge-Kutta schemes. Nevertheless, in the case of 

discontinuous functions, such as shock waves, these standard 

methods still present some numerical problems, such as 

numerical dispersion and diffusion close to the 

discontinuities.  

To overcome the problem of shock waves propagation, the 

authors propose in this paper the use of an alternative method: 

the Taylor-SPH method (TSPH) [8] [16] [17], which consists 

of applying first the time discretization by means of a Taylor 

series expansion in two steps and thereafter the spatial 

discretization using a corrected SPH. 

3.1. Proposed Numerical Method: Taylor-SPH  

3.1.1. Taylor-SPH Time Discretization  

Time discretization of equation (8) is carried out by means 

of a Taylor series expansion in time of U up to second order 

accuracy: 

2 2
1

22

nn

n n t
t

t t

+ ∂ ∆ ∂= + ∆ +
∂ ∂
U U

U U                   (11) 

The first order time derivative of the unknowns can be 

calculated using equation (8) 

.

n

n

t

∂ = −∇
∂
U

F                                 (12) 

The second order derivative with respect to time is given 

by 

2

2
.

n
n

tt

∂ ∂= −∇
∂∂

U F
                               (13) 

First step: In order to obtain the time derivatives of fluxes 

at time tⁿ, the values of the unknowns at an intermediate time 

t
n+1/2

 will be obtained first 

1/2
.

2

n n nt+ ∆= − ∇U U F                              (14) 

Using the computed value of U
n+1/2

, fluxes can be 

evaluated as  

1/22
( )

n

n n

t t

+∂ = −
∂ ∆
F

F F                             (15) 

which can now be substituted in equation (13), resulting on 

2
1/2

2

2
( . . )

n

n n

tt

+∂ = − ∇ − ∇
∆∂

U
F F                       (16) 

Second step: Substituting now the expressions obtained for 

the first and second order time derivatives, (12) and (16), in 

the Taylor series expansion (11), the following expression is 

obtained for the values of the unknowns at time t
n+1

 

1 1/2.n n nt+ += − ∆ ∇U U F                        (17) 

3.1.2. Spatial Discretization by the Corrected SPH Method 

Once the equations are discretized in time, the corrected 

SPH method will be used to discretize the equations in space. 

A brief summary of the basic SPH method and its corrected 
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form is presented.  

(i). Integral Approximations in SPH Method 

SPH is based on the concept of the integral approximation 

of a given function f and its derivatives. In SPH the integral 

approximation of a function f(x) is defined by 

( ) ( ') ( ', ) 'f f W h d
Ω

= −∫x x x x x                  (18) 

where the brackets denote the integral approximation, x and x’ 

are vectors, W(x-x’,h) is the kernel function and h is a 

measure of the size of the kernel support. It is clear that the 

kernel approximation ( )f x  converges to the exact 

function f(x) if the kernel function W(x-x’,h) tends to the 

Dirac function δ(x-x’). The accuracy of the SPH method 

depends on the properties of the kernel. It must fulfil the 

following conditions: 

- The kernel function must be positive 

( ', ) 0W h− ≥x x                          (19a) 

- The kernel function must be normalized over its support 

domain 

( ', ) ' 1W h d
Ω

− =∫ x x x                      (19b) 

- The kernel function must have a compact support 

( ', ) 0 when 'W h hκ− = − >x x x x ;       (19c) 

being κ a constant positive parameter  

- The kernel function must verify the Dirac delta function 

as h approaches to zero 

0
lim ( ', ) ( ')
h

W h δ
→

− = −x x x x                  (19d) 

- The kernel function must be a symmetric function of (x-

x'). 

The SPH approximation can be formulated in terms of the 

Eulerian kernel or the Lagrangian kernel. It has been shown 

by Belytschko et al. [1] that the Lagrangian kernel eliminates 

the tensile instability, and therefore it will be used here. 

Using the Lagrangian kernel, the size of the kernel support 

remains constant h=ho during the simulation. 

In this work the B-spline function based on the cubic 

spline function, previously used by Monaghan and Lattanzio 

[18], has been chosen as the kernel function:  

2 3

3

2 1
( ) 0 1
3 2

1
(2 ) 1 2

( ) 6

0 2

W C

ξ ξ ξ

ξ ξ
ξ

ξ

 − + ≤ ≤



 − ≤ ≤

= 



≥


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               (20) 

being
'

o o

r

h h
ξ

−
= =

x x
; the scaling factor C is given by 

1

oh
, 

2

15

7 ohπ
 and 

3

3

2 ohπ
 in 1D, 2D and 3D respectively. 

Concerning the SPH integral representation of the spatial 

derivative of a function f(x), it is given by  

( ) ( ') ( ', ) ?of f W h d
Ω

∇ = − ∇ −∫x x x x x             (21) 

where W∇ is the derivative of W with respect to x´. 

(ii). Corrected form of the SPH Discrete Approximation of 

Function 

In the SPH method, a continuum is represented by a set of 

particles, thus the SPH approximation of a function f at point 

I is given by  

1

N
J

I J IJ

J J

m
f f W

ρ=

=∑                                  (22) 

where the summation subscript J denotes a particle label and 

runs over all particles N inside the domain, such that 

I J ohκ− ≤x x . 

In equation (22), ( , )
IJ I J o

W W h= −x x denotes the value of 

the kernel centred at node I at position J; fI = f(xI) and mJ and 

ρJ are the mass and density associated to particle J. 

It is well known that for boundary particles, the 

consistency conditions are not satisfied when using 

approximation (22). For a particle J near the boundary, it 

support extends out of the problem domain Ω and the kernel 

function is truncated by the boundary. Therefore the 

normality condition of the kernel is no longer valid. To 

overcome this problem, it has been used here the corrective 

kernel approximation of a function 

1

1

1

N

J IJ J N
J

I J IJ JN
J

IJ J

J

f W

f f W

W

=

=

=

Ω
= = Ω

Ω

∑
∑

∑
ɶ                 (23) 

where J

J

J

m

ρ
Ω =  is the volume associated to particle J and 

IJ
Wɶ  

is given by 

1

IJ

IJ N

IJ J

J

W
W

W
=

=
Ω∑

ɶ

                             (24) 

It is important to note here that the denominator of above 

equation is unity for those particles whose support domain 

does not intersect the boundary. This correction of the 

approximating function satisfies the zeroth order 

completeness. 

(iii). Corrected form of the SPH Discrete Approximation of 

Derivatives 

Taking into account that 
1

0
N

J

I IJ

J J

m
f W

ρ=

∇ =∑ , the discrete form 
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of (21) can be written as  

1

( )
N

J

I J I IJ

J J

m
f f f W

ρ=

∇ = − ∇∑                   (25) 

where ( )I If f∇ = ∇ x  ; IJ

IJ

o IJ

W
W

h r ξ
∂∇ =
∂

x
; IJ I J= −x x x ; 

IJ IJr = x and IJ

o

r

h
ξ =  

Since, the completeness is given by the order of the 

polynomial which can be represented exactly; equation (25) 

satisfies only the zeroth order derivative completeness 

condition. 

In order to fulfil the first order completeness, the corrected 

form of the derivative of the approximating function must be 

used: 

1

N

I IJ IJ J

J

f f W
=

∇ = ∇ Ω∑ ɶ                          (26) 

where  

1

.

IJ

IJ N

IJ IJ J

J

W
W

W
=

∇
∇ =

∇ Ω∑
ɶ

x
                           (27) 

being 
IJ I J

f f f= −  

This modification of the SPH approximation for the 

gradient of a function f, allows the method to fulfil the first-

order completeness condition, enabling the derivatives of 

constant or linear fields to be reproduced exactly. 

3.1.3. Discretized Equations Using the Proposed Method: 

Taylor-SPH  

The time discretization is carried out in two steps by 

means of a Taylor series expansion. To perform the time 

discretization, it will be necessary the use of an auxiliary set 

of particles that will be called “virtual” particles. These 

“virtual” particles will be interspersed among the “real” 

particles in a similar manner it was done in stress-point 

integration methods. Fig. 1 shows the arrangement of “real” 

and “virtual” particles in one and two dimensions.  

 

Fig. 1. “Real” and “virtual” particles in 1D and 2D problems 

Thus, time discretization of model equations is carried out 

in two steps:  

- In the first step, the values of the field variables at time 

t
n+1/2

 are computed by means of equation (14) at the 

positions of the Nv “virtual” particles. 

- In the second step, the values of the field variables at 

time t
n+1

 are computed, using equation (17), at the 

positions of the Nr “real” particles.  

First step: Applying the corrected SPH spatial 

discretization to the first step of time discretization, (14), we 

obtain  

1/2
.

2

n n n

VP VP VP

t+ ∆= − ∇U U F                     (28) 

The subscript VP indicates that the values of U and ∇F are 

computed at the positions of the “virtual” particles.  

Using the corrected form for the approximation of 

derivatives given by equation (26), we obtain the values of 

the variable U at t
n+1/2 

1/2

12

Nr
n n nJ

VP VP J IJ

J J

mt
W

ρ
+

=

∆= − ∇∑U U F ɶ                 (29) 

being J the “real” particles, such that 2
J VP o

h− ≤x x . 

Second step: Applying the corrected SPH spatial 

discretization to equation (17), we obtain 

1 1/2
.

n n n

RP RP RP
t

+ += − ∆ ∇U U F                       (30) 

The subscript RP indicates that the values of U and ∇F are 

computed at the positions of the “real” particles. 

Using expression (26), the values of the variable U at t
n+1

 

are given by 

1 1/ 2

1

Nv
n n nJ

RP RP J IJ

J J

m
t W

ρ
+ +

=

= − ∆ ∇∑U U F ɶ            (31) 

where J are the “virtual” particles, such that 2
J RP o

h− ≤x x . 

In the 2D procedure, a structured quadrilateral particle 

arrangement is used. As it is shown in Fig. 2; 4 “real” 

particles are arranged so they form a square and a “virtual” 

particle for the calculations at t
n+1/2

 is placed in the centroid 

of the square.  

In this particular case, computation of particle volumes is 

especially easy. The square is then subdivided into 4 other 

squares for computation of the volumes, and once the 

coordinates of the “real” and “virtual” particles are known, 

quadrilateral volumes can be easily computed as it is shown 

in Fig. 2. It is important to note here that in the first step, (29), 

only volumes of “real” particles are considered, while in the 

second step, (31), only volumes of “virtual” particles are 

taken into account. Note that particle masses and volumes 

need to be computed only once for a Lagrangian kernel. 

It is also important to mention that the method presented 

here does not require any special treatment of the boundary 

conditions. 
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Fig. 2. “Real” and “virtual” particles arrangement in a structured 

quadrilateral configuration: (a) Quadrilateral volume of “real” particles (b) 

Quadrilateral volume of “virtual” particles 

3.2. Runge-Kutta Time Discretization for SPH 

To solve the system of partial differential equations (8), the 

traditional SPH method applies first the SPH spatial 

discretization, obtaining a set of simultaneous Ordinary 

Differential Equations, and this set of equations is then 

integrated in time using one of the standard techniques, such 

as the Runge-Kutta schemes.  

3.2.1. SPH Discretization 

Applying the corrected SPH discretization presented in 

Section 3.1.2 to equation (8), it results in the following semi-

discrete equation 

( , )I
IH t

t

∂
=

∂
U

U                                (32)  

where 
1

( , ) ( )
N

J

I IJ IJ

J J

m
H t t W

ρ=
= − ∇∑U F ɶ  being J the neighbouring 

particles around particle I, such that 2J I oh− ≤x x . 

3.2.2. Time Integration: Runge-Kutta Schemes 

The basic idea of Runge–Kutta (RK) methods is to 

evaluate the right-hand side of the differential system of 

equations given above (32) at several values of the unknowns 

UI in the interval between t
n
 and t

n+1
, and to combine them in 

order to obtain a high order approximation of the field 

variables at t
n+1

. The number of intermediate values is 

referred to as the “Runge–Kutta stages”. 

Applying the general explicit M-stage Runge-Kutta 

method to solve (32) it results in 

1
( ) ( )

1

1 ( )

1

( , )  ;       1

( , )

i
i n n j

I I ij j I

j

M
n n n j

I I j j I

j

t a H t c t i M

t b H t c t

−

=

+

=

= + ∆ + ∆ ≤ ≤

= + ∆ + ∆

∑

∑

U U U

U U U

   (33) 

Where  ∆t = t
n+1

- t
n 

and 
n

IU  = UI (t
n
), and the coefficients 

aij, bj and cj (1 ,i j M≤ ≤ ) define the accuracy and stability of 

a given Runge-Kutta scheme. These coefficients are often 

written in tabular format known as the Butcher table [4] 

 with 0ija for j i= ≥   

Second order Runge-Kutta scheme: To integrate in time 

the equation (32) by using the second order Runge-Kutta 

scheme, it is necessary to perform two stages (M = 2) with b1 

= b2 = 1/2; c2 = a21 = 1: 

(1)

(2)

1 (2)

( , )

( , ) ( , )
2

n

I I

n n n

I I I

n n n n n

I I I I

tH t

t
H t H t t

+

=

= + ∆
∆
 = + + + ∆ 

U U

U U U

U U U U

          (34) 

Fourth order Runge-Kutta scheme: To obtain the value of 

UI at time t
n+1

 from equation (32) by using the 4th order 

Runge-Kutta scheme, it is necessary to perform four stages 

(M = 4) with the coefficients given in the Butcher table [4] 
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4. Numerical Examples 

The purpose of this section is to present some examples 

which will show the performance of the Taylor SPH method. 

The examples which will be considered next have been 

chosen in order to illustrate the following points: 

(i) The TSPH method eliminates numerical instabilities  

(ii) The TSPH method presents good wave propagation 

properties 

(iii) The TSPH method provides solutions of more accuracy 

than those obtained using the Runge-Kutta time 

integration schemes for the corrected SPH. 

(iv) The TSPH method presents good performance in 

bending dominated situations using a reduced number 

of particles 

ci aij

bi

ci aij

bi
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4.1. Propagation of a Shock Wave on a 1D Elastic Bar 

In this section it will be solved the problem of a shock 

wave propagating in 1D elastic bar, using the proposed 

method (TSPH). The results will be compared with those 

obtained using the Runge–Kutta time integration schemes 

with the corrected SPH. 

The problem consists of a bar of length L = 1 m with a unit 

section. The initial and boundary conditions are the following: 

·Initial condition: 
1 m/s 0 0.5

( ,0)
0 0.5

for x m
v x

for x m

− ≤ ≤
=  >

 

·Dirichlet boundary conditions:  

[ [(0, ) 0 ( , ) 0 0,t and v L t tσ = = ∀ ∈ +∞   

The material properties are the density 
32000 Kg/mρ =  

and the elastic modulus 
78 10  PaE = . With these 

parameters, the wave speed is 200 / .
E

c m s
ρ

= =  

The bar has been spatially discretized by 51 “real” 

particles and 50 “virtual” particles for TSPH. The distance 

between two consecutive “real” particles is 0.02x m∆ = . 

There is an analytical solution available for this elastic 

problem: the incoming wave will propagate towards the right 

boundary without any distortion and keeping its initial 

amplitude of 54.10 Pa
o o

v Eσ ρ= =  and 1 m/s
o

v = − . It 

will reflect at the fixed end (L = 1 m) and the amplitude of σ 

at this point will be doubled to a value of 
58.10 Pa , while the 

velocity of the wave after reflexion will propagate along the 

bar with 1 m/s
o

v = .  

Figs. 3-4 show the stress ( 1 , )x m tσ =  and the velocity 

( 0.5 , )v x m t=  after reflection of the wave using the TSPH 

method. The time-step used for the analysis has been chosen 

to be 410t s−∆ =  which corresponds to a Courant number

1
c t

C
x

∆= =
∆

. It can be observed that no instability appears, 

neither numerical dispersion nor numerical diffusion appear 

in the front of the wave and the results are in complete 

agreement with the analytical solution.  

 

Fig. 3. Stress history at the fixed end x=1m 

 

Fig. 4. Velocity history at x=0.5m 

In order to show the better performance of the TSPH in 

comparison with the Runge-Kutta time integration schemes, 

the same example of the propagation of shock wave in an 

elastic bar is solved using fourth order Runge-Kutta (RK4) 

and TSPH schemes under the following initial and boundary 

conditions.  

·Dirichlet boundary conditions: 

1 m/s 2.5
(0, )

0 2.5

f

f

for t t ms
v t

for t t ms

≤ ==  > =
 and ( , ) 0 0v L t t= ∀ ≥   

·Initial conditions: [ ]( ,0) ( ,0) 0 0,v x x x Lσ= = ∀ ∈   

With the TSPH method, the bar is discretized with 101 

“real” particles and 100 “virtual” particles. The distance 

between two consecutive “real” particles is 0.01x m∆ = . The 

time step is 5510t s−∆ = . However, using the 4
th

 order 

Runge-Kutta time integration with a corrected SPH, the bar is 

discretized with 101 particles and the time step used is 
41.210 .t s−∆ =  

The results of the comparison are presented in Figs. 5-6. 

Fig. 5 shows the comparison for stress at point x=1 m. The 

comparison for velocity at point x=0.5m is given in Fig. 6. It 

can be observed that when using the 4
th

 order Runge-Kutta 

time integration schemes with a corrected SPH, numerical 

dispersion and diffusion are present. On the contrary, the 

numerical solution using the TSPH method is free of 

oscillations and diffusion and the result is in complete 

agreement with the analytical solution.  

 

Fig. 5. History stress at fixed end x=1m. Comparison between TSPH and 4th 

RK- SPH 
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Fig. 6. Velocity history at x=0.5m. Comparison between TSPH and 4th RK-

SPH 

These results show the good performance and efficiency of 

the Taylor-SPH (TSPH) method in comparison with the 

corrected SPH with a Runge-Kutta time integration (RK-

SPH). 

4.2. Numerical Stability of Taylor-SPH Method 

The aim of this section is to study the numerical stability 

of the Taylor-SPH method with respect to the smoothing 

length ho and the time step ∆t.  

4.2.1. Stability Analysis with respect to the Smoothing 

Length  

It is well known that the smoothing length is very 

important in the SPH method since it has direct influence on 

the efficiency of the computation and the accuracy of the 

solution. In the present work a Lagrangian kernel is used and 

the smoothing length ho has a constant value.  

In order to accomplish a sensitivity analysis of the 

proposed method (TSPH) with respect to the smoothing 

length ho, the problem of propagation shock wave in an 

elastic 1D bar of length L = 1 m has been solved considering 

a fixed distribution of 51 “real” particles and 50 “virtual” 

particles. The time step used for the analysis is ∆t=10
−4

 s. 

The value of parameter ho has been gradually increased and 

stability analysis has been carried out using the L2 norm to 

estimate the error. 

The error estimation using the L2 norm is given by  

2

2

2

exact h

L

L exact

L

v v
Err

v

−
=  with 

2

2

L
v v dx

Ω
= ∫      (36) 

where v
exact

 is the exact solution and v
h 

is the numerical 

solution given by Taylor-SPH. 

Fig. 7 gives the error as a function of ho/∆x using the 

TSPH method. The values for h0/∆x considered in this study 

are within the range of 0.6-2.5. For lower values than 

ho/∆x=0.6 there are not enough particles within the support 

domain to accomplish the approximation. It can be observed 

that when ho/∆x is within the range of 0.6-1.5 the error is 

about 10
-3

%, the solution preserves its accuracy and it is in 

good agreement with the analytical solution. If the ratio ho/∆x 

is increased the solution loses its accuracy until it becomes 

highly distorted.  

 

Fig. 7. Error in L2 norm of the Tayor-SPH method as a function of ho/∆x 

4.2.2. Stability Analysis with respect to the Time Step  

In order to perform the stability analysis of the Taylor-SPH 

method with respect to the time step or the Courant number, 

a similar example as above has been treated. The parameter 

ho/∆x has been kept constant equal to 1.5 and the time step 

has been gradually increased from 10
−5

s to 10
−4

s. The 

stability analysis of the numerical solution as a function of 

the Courant number 410C t= ∆ is given in Fig. 8. It can be 

observed that when the time step is ∆t=10
−4

s which 

corresponds to Courant number 1C =  the accuracy of the 

numerical solution gets its maximum with an error of about 

10
-3

%. As the value of the time step is decreased, the solution 

loses its accuracy becoming oscillatory. For C > 1 the 

numerical solution becomes unstable.  

 

Fig. 8. Error in L2 norm of Taylor-SPH method as a function of the Courant 

number  

4.3. Propagation of a Shock Wave on a 2D Elastic Bar 

To investigate the performance of the TSPH method, a 

simple 2D example is studied. It consists of two opposite 

velocity shock waves which propagate into a 2D elastic bar. 

The bar is 1m long and 0.1m width. The material properties 

are density 
32000 Kg/mρ =  and elastic modulus 

78 10  PaE = . A rectangular impulse with a velocity of 1m/s 

is applied to both ends of the bar. The bar is spatially 

discretized using a structured particle arrangement of 306 

“real” particles. The distance between two consecutive “real” 
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particles is 0.02m. Fig. 9 shows the horizontal stress at time 

t=2ms for both methods: Taylor-SPH and the 4
th

 order 

Runge-Kutta scheme (RK-SPH). It can be observed that the 

results are very dispersive when using RK-SPH while TSPH 

provides a more accurate solution and minimum dispersion. 

 

Fig. 9. TSPH vs RK-SPH: Horizontal stress at t=2ms  

4.4. Bending Problem 

The purpose of this example is to show the behaviour of 

the proposed method in bending dominated situations. 

Consider a cantilever beam subjected to a vertical load is Fo 

= 8 10
2
 N at the free end. Material is assumed to be elastic, 

with elastic modulus E = 8 10
9
 Pa , Poisson's ratio ν = 0.0, 

density ρ=2 10³ Kg/m³ and the beam dimensions are L = 1 m 

and b = 0.02 m. The vertical displacement at x=L calculated 

by the TSPH method is compared to the exact solution ymax = 

0.05 m. A structured arrangement of 63 “real” particles and 

40 “virtual” particles is used as it is shown in Fig. 10.  

 

Fig. 10. ‘‘Real’’ and “virtual” particles arrangement for a cantilever beam 

 

Fig. 11. Bending of a cantilever beam: vertical displacements using the 

TSPH method 

Fig. 11 depicts the vertical displacement of the beam 

obtained with the TSPH method. The computed numerical 

value of the maximum deflection obtained at the right end is 

4.9 10
-2

 m, which is in very good agreement with the 

analytical solution.  

As it can be observed, the result obtained with the 

proposed algorithm reaches an acceptable accuracy with a 

small number of degrees of freedom (63 “real” particles) as 

well as it seems to be free of instabilities. 

In order to study the improvement in the numerical 

solution for an increasing number of particles a convergence 

analysis has been accomplished. Table 1 shows the vertical 

displacement at the right end of the beam as a function of the 

increasing number of particles. 

In this analysis it is shown that the TSPH method 

converges quickly to the analytical solution and only a small 

number of particles is required to obtain very accurate results. 

Table 1. Vertical displacement at L = 1 m with an increasing number of 

particles 

“Real” 

particles 

“Virtual” 

particles 
ymax exact ymax TSPH Error (%) 

18 10 

 0.05 

0.04851 8.702 

33 20 0.04865 2.70 

63 40 0.04901 1.98 

99 60 0.04902 1.96 

5. Conclusions 

A new meshfree method Taylor-SPH for dynamic 

problems has been presented. The method consists of a two-

steps time discretization scheme based on a Taylor series 

expansion of the stress and velocity fields using a corrected 

SPH. Two different sets of particles have been used for the 

computations at each time step and a Lagrangian kernel has 

been used in order to avoid numerical instabilities.  

The problem of the propagation of a shock wave in an 

elastic bar has been analyzed using the proposed method. The 

results have been compared with those obtained using the 4
th

 

order RK-SPH, and it has been demonstrated how the 

proposed TSPH method provides more accurate solutions, 

since numerical problems such as diffusion and dispersion 

are absent.  

It has been proved that the proposed method: 

- eliminates numerical instabilities  

- presents good shock wave propagation properties 

- provides solutions of more accuracy than those obtained 

using the Runge-Kutta time integration schemes for the 

corrected SPH. 

- presents good performance in bending dominated 

situations using a reduced number of particles 

In addition to that, the method has been shown to be stable, 

robust and only a reduced number of particles is required to 

obtain accurate results.  
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