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Abstract: This paper examines the fractional order of influenza using an epidemic model. The stability of disease-free and 

positive fixed points is explored and studied. The Adams-Bashforth-Moulton algorithm is employed to determine the solution 

and also simulate the system of differential equations. It is observed that Adams-Bashforth-Moulton method gives similar 

results as obtained in Runge-Kutta technique and ODE 45. 
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1. Introduction 

The (2003–2004 outbreak of “flu”) and the number of 

casualties associated with the outbreak, which was speculated 

to be the result of the interactions between domestic avian 

populations and humans in Asia and Africa (Cambodia, 

China, Indonesia, Japan, Laos, South Korea, Thailand, 

Vietnam and Morocco) has re-stimulated interest in finding a 

lasting solution to a disease which was taught have face 

extinction since the last massive outbreak of such a “flu” was 

the 1918 pandemic. The flue that occurred in Morocco took 

the world aback since the Asian flue had not happened in 

recent history. Generally, the intermittent outbreak of 

epidemic occurrence has been studied in the direction of 

communicable diseases such as rubeola and influenza [10]. 

In trying to understand the regular re-occurrences of such 

diseases, mathematical models have been applied to the study 

of mechanisms that are capable of generating recurrent, more 

importantly periodic, outbreaks [12;13]. Modern methods of 

examining the role played by qualitative dynamics of 

communicable on mechanisms such as quarantine of 

infectious individuals, age-structure and few others have 

been explored elsewhere. 

Over the past century only three subtypes of influenza type 

A (H1N1, H2N2 and H3N2) have been indentified to be 

associated with influenza pandemics or epidemics which 

have occurred in many parts of the world. Point mutations in 

particular areas of the HA molecule “continuously” produces 

fresh strains within a certain subtype whilst major molecular 

variations have been associated with genetic shifts (new 

subtypes). The immune system of an individual has been 

tired to the high mortality rate of influenza type A. For 

influenza type A cross-immunity, that has capacity of an 

individual’s immune system to connect with its history of 

preceding infections to either diminish the probability of new 

infections (by related strains) or to increase “virus control” 

(within each host) by strengthening the host’s immune 

response, can influence the pathogen’s transmission 

dynamics. To the best of our knowledge fractional order 

calculus has not been used in the study of the dynamics of 

influenza type A. 

In this paper, we studied the fractional order influenza type 

A epidemic model. The stability of equilibrium points is 

determined and studied. Numerical solutions of the model are 

presented. We propose that fractional order equations are 

more appropriate than integer order ones in mathematical 

modeling of processes such biological, economic, and social 

systems. Adams-Bashforth-Moulton algorithm and other well 

known methods have been applied to solve and simulate the 

system of differential equations. 

2. Mathematical Model 

El hia et al., 2012 proposed Influenza A(H1N1) 

transmission model by taking into consideration that, an 

individual can be infected only through contacts with 

infectious individuals. The model also assumes that the host 

population size at time t , is partitioned into subclasses of 

individuals who are susceptible, ( ),S t ( )I t and ( )R t , 

respectively. In addition, the host population is recruited at a 

rate Λ . The per capita recovery rate of the hosts is given by r . 

Susceptible individuals begin carrying the pathogen after 
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getting into contact an infective host at a rate β . H1N1 

induced mortality rate is denoted by d . This model is 

governed by the following system of non linear ordinary 

differential equations: 

( )

dS I
S S

dt N

dI I
S d r I

dt N

dR
rI R

dt

µ β

β µ

µ

 = Λ − −

 = − + +

 = −


                (2.1) 

Now we incorporate fractional order in to the ODE model 

by El hia et al., 2012 in (2.1). The new system is described 

by the following set of fractional order differential equations: 

( )

t

t

t

I
D S S S

N

I
D I S d r I

N

D R rI R

α

α

α

µ β

β µ

µ

= Λ − −

= − + +

= −

                    (2.2) 

where 
tDα  represents the Caputo fractional derivative. Since 

model (2.2) monitors the dynamics of human populations, all 

the parameters are considered to be non-negative. In addition, 

it can be proved that all state variables of the model are non-

negative for all time 0t ≥  (see, for instance, [6]). 

The closed set ( ){ }3, , : /S I R S I R µ+Ω = ∈ + + = Λℝ is 

positively invariant with respect to model (2.2). 

Proof. The fractional derivative of the total population, 

obtained by summing all the equations of model (2.2) and is 

given by 

( ) ( )tD N t N t dIα µ= Λ − −                  (2.3) 

The solution to (2.3) is expressed as 

,1 ,1 1( ) (0) (  ) (  )N t N E t t E tα α α
α αµ µ+= − + Λ − , where ,Eα β is 

the Mittag-Leffler function. By considering the fact that the 

Mittag-Leffler function has an asymptotic behavour [6], 

( )1

,

1

( ) ,
( )

kw
w

k

z
E z O z

k
α β β α

−
− −

=

− +
Γ −∑∼  

, ( )
2

z ar z
απ π → ∞ < ≤ 

 
. 

One can examine that ( ) /N t µ→ Λ as t → ∞ . Therefore, 

all solutions of the model with initial conditions in Ω  remain 

in Ω  for all 0t > . Thus, region Ω  is positively invariant 

with respect to model (2.2). 

3. Equilibrium Points and Stability 

In the following, we look at the stability of the 

corresponding fractional ordered dynamical system: 

1 2 3( , , ),           (0,1),    1 3.t i iD x f x x x iα α= ∈ ≤ ≤    (3.1) 

Let 
* * *

1 2 3( , , )E x x x=  be an equilibrium point of system (3.1) 

and 
*

i i ix x η= + , where i
η  is a small disturbance from a 

fixed point. Then 

t i t iD D xα αη =                               (3.2) 

System (3.2) can be written as: 

,tD Jαη η=                                 (3.3) 

where ( )1 2 3, ,η η η η Γ= and J  is the Jacobian matrix 

evaluated at the equilibrium points. 

By applying Matignon’s results [1], it follows that the 

linear autonomous system (3.3) is asymptotically stable if 

arg( )
2

απλ >  is satisfied for all eigenvalues of matrix J  at 

the equilibrium point 
* * *

1 2 3( , , )E x x x= . If 
3 2

1 2 3( ) ,x x d x d x dφ = + + +  Let ( )D φ denote the discriminant 

of a polynomial φ , then 

1 2 3

1 2 3

2 3 3 2

1 2 3 1 2 3 1 2 31 2

1 2

1 2

1 0

0 1

( ) 18 ( ) 4 4 27 .3 2 0 0

0 3 0

0 0 3 2

d d d

d d d

D d d d d d d d d dd d

d d

d d

φ = − = + − − −  

Follow [2-4], we have the proposition. 

Proposition. One takes into consideration that 1
E exists in 

3

+ℝ . 

To evaluate the equilibrium points let 

0,    0,   0.t t tD S D I D Rα α α= = =  

Then ( )0 / ,0,0E µ= Λ . We denote the basic reproduction 

number as [5]. 

0
( )d r

β
µ

ℜ =
+ +

 

It implies the average new infections generated by one 

infected individual during his lifespan when the population is 

at 0
E . By (2.2), a positive equilibrium 

* * *

1 ( , , )E S I R=
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satisfies 

* *

0

1
,S N=

ℜ
 

* *0

0

( 1)
,

( )
I N

r

µ
µ

ℜ −
=

ℜ +
 

* *0

0

( 1)
,

( )

r
R N

rµ
ℜ −

=
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where 

[ ]
* 0

0 0

( )

( 1) ( )

r
N

d r

µ
µ µ

Λℜ +
=

ℜ − + ℜ +  

The Jacobian matrix 0
( )J E for the system given in (2.2) 

evaluated at the disease-free equilibrium is as follows: 

0

0

( ) 0 ( ) 0

0

J E d r

r

µ β
β µ

µ

− − 
 = − + + 
 − 

 

Theorem 3.1. The disease-free equilibrium 0
E  is locally 

asymptotically stable if 0
1ℜ < and is unstable if 0

1ℜ > . 

Proof. The disease-free equilibrium is locally 

asymptotically stable if all the eigenvalues, , 1, 2,3
i

iλ =  of 

the Jacobian matrix 0
( )J E  satisfy the following condition [1, 

3]: 

arg( )
2

i

απλ >                               (3.4) 

The eigenvalues of the Jacobian matrix 0
( )E  are 1

λ µ= − , 

2
λ µ= − and 3

( )d rλ µ β= − + + −  

Since all the eigenvalues of the Jacobian matrix 0
( )J E are 

negative hence 0
E  is locally asymptotically stable if 0

1ℜ <
and is unstable if 0

1ℜ > . 

We now discuss the asymptotic stability of the endemic 

(positive) equilibrium of the system given by (2.2). 

The Jacobian matrix 1
( )J E  evaluated at the endemic 

equilibrium is given as 

*

* *

1

0

( ) ( ) 0

0

I

N

I S
J E d r

N N

r

βµ
µ

β β µ
µ µ

µ

 −− 
 
  −
 = − + + 
  
 − 
 
 

 

Theorem 3.2. If 0
1ℜ > , the endemic equilibrium point 1

E  

of system (2.2), is locally asymptotically stable. 

Proof. The disease-free equilibrium is locally 

asymptotically stable if all the eigenvalues, , 1, 2,3
i

iλ =  of 

the Jacobian matrix 1
( )J E  satisfy the following condition [2]: 

arg( )
2

i

απλ >                         (3.5) 

The eigenvalues of the Jacobian matrix 1
( )E  are 1

λ µ= − , 

�� =
�(���	
��	��)	
���	���
�����	(�
���	���	
��	��)�

���
, 

�� =
−(��� + ��� + ��) + ���� − �−4������ + (−���� + ��� + ��� + ��)�

2��
 

Since all the eigenvalues of the Jacobian matrix 1
( )J E are 

negative hence 1
E  is locally asymptotically stable if

0
1ℜ > .The endemic equilibrium is locally asymptotically 

stable if all the eigenvalues, , 1, 2,3
i

iλ = of the Jacobian 

matrix 1
( )J E satisfy the following condition [2-4]. 

4. Numerical Methods and Simulations 

In view of the fact that most of the fractional order 

differential equations do not have exact analytic solutions, so 

approximation and numerical techniques must be employed. 

Numerous analytical and numerical methods have been put 

up to solve the fractional order differential equations. For 

numerical solutions of the system (2.2) one can apply the 

generalized Adams-Bashforth- Moulton method. To provide 

the exact solution by means of this algorithm, we take into 

account the following nonlinear fractional differential 

equation [7]: 

( ) ( , ( )),    0 ,tD y t f t y t t Tα = ≤ ≤  

( )

0(0) ,    0,1, 2, ..., 1,   where [ ].k ky y k m m α= = − =  

This equation is equivalent to Volterra integral equation: 

1
1

0

0 0

1
( ) ( ) ( , ( ))

! ( )

tkm
k

k

t
y t y t s f s y s ds

k

α

α

−
−

=

= + −
Γ∑ ∫  (4.1) 

Diethelm et al. employed the predictor-correctors scheme 

[8; 9] based on the Adams-Bashforth-Moulton algorithm to 

integrate [8]. By using this scheme to the fractional order 

influenza A epidemic model and setting / ,
n

h T N t nh= = , 
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and 0,1, 2,..., ,n N Z
+= ∈  [9] can be discretized as follows 

[7]: 

1

1 0 1 1
( 2)

p

p p n

n n n
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+ + +
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( ) ( )( ), 1 1 ,    0 .j n

h
b n j n j j n

α
α α

α+ = − + − − ≤ ≤  

Table 1. Parameter values for the numerical simulation. 

Notation Parameter Values Sources 

Λ  20 Assumed 

β  0.75 Hattaf and Yousfi,2009 

µ  53.9139 10−×  Hattaf and Yousfi,2009 

r  0.2 El hia et al., 2012 

d  0.63 El hia et al., 2012 

Table 2. Initial conditions. 

(0)S  630 10×  

(0)I  30 

(0)R  28 

We solve numerically the equation (2.2) with initial 

conditions by employing the Adams-Bashforth-Moulton. 

Again the forth-order Runge-Kutta and ODE 45 numerical 

method are also applied for numerical solution for the same 

equation (2.2). For these simulation results we employ a set 

of parameters provided in Table 1. In order to show the 

usefulness of intended algorithm as an approximate 

instrument for computing the nonlinear fractional differential 

equation (2.2) for given large time t, we employ Adams-

Bashforth-Moulton algorithm on the interval [0-100]. 

From the graphical results produced in Figs 1-3, it shows 

the approximate solutions obtained using the Adams-

Bashforth-Moulton (ABM) and the classical Runge-Kutta 

method of ( ), ( )  R( )S t I t and t  and for 1α = . From the 

graphical result of these figures, it can be seen that the results 

obtained using the ABM go with the results of the classical 

Runge-Kutta method very well 

 

Figure 1. The plot shows the susceptible individuals. 
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Figure 2. The plot shows the infected individuals. 

 

Figure 3. The plot shows the recovered individuals. 

5. Conclusion 

In this paper, we examined a fractional order system for 

SIR (Susceptible-Infected-Recovered) Influenza A epidemic 

model. Adams-Bashforth-Moulton method is applied to 

compute an approximate solution of the model in fractional 

order. This method is very accurate since the solution 

obtained is close to other standard method. The results 

obtained are compared with those forth order Runge-Kutta 

technique and ODE45 method in the integer perspectives. 

Some numerical results are shown. 
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