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Abstract: In this paper, we present a new method for solving two-point boundary value problem for certain ordinary 

differential equation. The two point boundary value problems have great importance in chemical engineering, deflection of 

beams etc. In this study, Galerkin finite element method is developed for inhomogeneous second-order ordinary differential 

equations. Several examples are solved to demonstrate the application of the finite element method. It is shown that the finite 

element method is simple, accurate and well behaved in the presence of singularities. 
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1. Introduction 

Two-point boundary-value problems in ordinary 

differential equations occur in many branches of physics; 

examples include the two-dimensional, incompressible, one-

dimensional heat transfer, boundary layer equations, etc. The 

corresponding ordinary differential equations can be 

nonlinear or linear but with complex coefficients. If the 

differential equation is nonlinear or linear but with complex 

coefficients, a closed form analytic solution is, in general, 

difficult to obtain, if not possible. Therefore, a numerical 

solution is sought. Many researchers have developed 

numerical technique to study the numerical solution of two 

point boundary value problems. Villadsen and Stewart [5] 

proposed solution of boundary value problem by orthogonal 

collocation method. Jang [6] proposed the solution of two-

point boundary value problem by the extended Adomian 

decomposition method. The Galerkin-finite element method 

is well known numerical technique for the numerical solution 

of differential equations. Dogan [7] proposed the Galerkin-

finite element approach for the numerical solutions of 

Burgers’ equation. Sengupta et al. [8] carried out Gakerkin 

finite element methods for wave problems. Kaneko et al. [9] 

discussed the Discontinuous Galerkin-finite element method 

for parabolic problems. EI-Gebeily et al. [10] studied the 

finite element- Galerkin method for singular self-adjoint 

differential equations. Sharma et al. [11] proposed Galerkin-

finite Element Methods for numerical solution of advection- 

diffusion equation. Onah [12] proved the asymptotic 

convergence of the solution of a parabolic equation by using 

two methods namely, the Galerkin method expressed in terms 

of linear splines and the Finite Element Collocation method 

expressed by cubic spline basis functions. In this paper, we 

consider the following inhomogeneous second order 

differential equation  

( ) ( ) ( ) ( ) ( ) ( ),

( ) 0

( ) 0

u x p x u x q x u x f x x

u

u

α β
α
β

′′ ′+ + = < <
 =
 =

   (1.1) 

where 
2

( ) [ , ]p x α β= ℂ  ( ) 0p x λ≥ >  in [ , ]α β  ,

1
( ) [ , ]q x α β=ℂ , ( ) 0q x ≥ on [ , ]α β and 

1
( ) [ , ]f x α β= ℂ  

We assume that problem (1.1) has a unique solution ( )u x  

In the present work, we use Galerkin-finite element 

method for the numerical solution of two point boundary 

value problems. The approach is simple and effective.   

The remaining part of the article is organised as follows. In 

Section 2, we shall  first  reformulate  (1.1) as a variational 

problem in the space variables x .We shall then define a 

Galerkin approximation ( )u x to the solution of (1.1) by 

requiring that u lie in a finite-dimensional space of functions, 

also an error estimate is given. The Full Discretized system 

arising from either of the spatial discretisations is given in 

Section 3. In section 4 of this paper, we shall make some 

direct applications of approximation theory to some test 
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problems. Finally, Section 5 concludes the article with final 

remarks   

2. Formulation of the Variational 

Problem and Galerkin 

Approximations 

This problem may also be stated in weak form: find 

( )1

0
[ , ]u H α β∈ such that 

( , ) ( , )u w f wΘ =  for 
1

0 ([ , ])w H α β∈            (2.1) 

where 

( , ) ( ) ( )
dw du du

u w wp x wq x u dx
dx dx dx

β

α

 Θ = − + + 
 
∫ , ,u w uwdx

β

α

= ∫  (2.1*) 

The (standard) Galerkin method for approximating the 

solution u of (2.1) amounts to constructing a family of finite–

dimensional subspaces { }
h

S  0 1h< < , and seeking 
h h

u S∈
satisfying the linear system of equations 

( , ) ( , )
h

u fχ χΘ =  for h
Sχ ∈                         (2.2) 

We shall assume that the data are such that the unique 

solution u  of (2.1) belongs to ( )1 2

0 ( ) ( )u H H∈ Ω ∩ Ω  and 

satisfies the elliptic regularity estimate that for some 0C > , 

independent of f and u we have    

2
u C f≤                                          (2.3) 

Under our hypotheses, a unique solution 
h

u  of (2.2) exists 

and satisfies 

1 1inf
h

h
x S

u u C u χ
∈

− ≤ −                         (2.4) 

for some constant C independent of h. The existence-

uniquenss of 
h h

u S∈ is guaranteed by Lax-Milgram theorem 

applied to the Hilbert space ( ),hS ⋅  the proof of Lax-

Milgram theorem is  given in Appendix A. Assuming  that 

{ } 2

1 2inf
hx S

h Chϕ χ ϕ χ ϕ
∈

− + − ≤  ( )1 2

0
( ) ( )H Hϕ ∈ Ω ∩ Ω   (2.5) 

we obtain from (2.4) the optimal–rate 
1
( )H Ω  –error estimate 

1 2h
u u Ch u− ≤                                    (2.6) 

The 2L –error estimate is obtained by the “Nitsche trick”, 

by letting 
h

e u u= −
 
and considering ( )1 2

0 ( ) ( )w H H∈ Ω ∩ Ω  

the solution of the problem 

( , ) ( , )w eϕ ϕΘ =  for  
1

0 ( )Hϕ ∈ Ω                    (2.7) 

Then 
2

( , ) ( , ) ( , ) ( , )e e e w e e w e w χ= = Θ = Θ = Θ − for  any 

h
Sχ ∈ , 

By the continuity of L  in 
1 1
( ) ( )H HΩ ∗ Ω  we have then 

2

1 1 1 2 1
.e C e w C e h w Ch e eχ= − ≤ ≤          (2.8) 

Hence 
2

1 2
e Ch e Ch u≤ ≤  

In general, assuming that for some integer  2r ≥  

{ }1inf
h

r

r
x S

w h w Ch wχ χ
∈

− + − ≤  for ( )1

0 ( ) ( )
r

w H H∈ Ω ∩ Ω    (2.9) 

where .  denotes  the norm in ( )
s

H Ω , 
0

. .=  and the 

Nitsche argument give
1

( ) ( )
r

r
e t h e t Ch u+ ≤  

( )1

0 ( ) ( )
r

u H H∈ Ω ∩ Ω   

3. Fully Discretized Finite Element 

Models 

We shall approximate the solution of (2.2) by requiring 

that u  and χ  lie in { }
h

S  0 1h< < . Let 
h

Sκχ ∈  for 

1, 2,..., Nκ = . Assume that the set 
1
,...,

N
χ χ  is linearly 

independent. Denote by ϒ  the subspace spanned by 

1
,...,

N
χ χ  ,let { }

1

N

κ κχ
=

be a basis of  
h

S  where

dim
h

N S=  .We shall approximate u  of (2.1) by a function  

1

( ) ( )
N

hu x c xκ κ
κ

χ
=

=∑                           (3.1) 

( , ) ( , )hu fχ χΘ =  for 
1

0 ( )Hχ ∈ Ω  hSχ ∈            (3.2) 

Substituting this expression for hu  in (2.2) and taking 

, 1,..., Nκχ χ κ= =  we see that 

hGc f=                                        (3.3) 

Where G  is the NxN matrix defined by

( )( , ) ( ) ( )
j j j j

G G p x q x dx

β

κ κ κ κ κ
α

χ χ χ χ χ χ χ χ′ ′ ′= = Θ = + +∫ ,

1 , j Nκ≤ ≤  1[ , , ]
T

NC c c= … and [ ]1( , ), , ( , )
T

h N
f f fχ χ= … . 

Where G  is a positive definite matrice. 

4. Numerical Example 

In this section, some numerical examples are studied to 

demonstrate the accuracy of the present method. The 

examples are computed using MatlabR2012b. The versatility 

and accuracy of proposed method is measured using L∞ . 

max ( )N j N j
j

L u U u U∞ ∞
= − = −  

Example 1. Considering equation 
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( ) ( ) ( ) ( ) ( ) ( ),u x p x u x q x u x f x′′ ′+ + =  0 1xα β= ≤ ≤ =    (4.1) 

with boundary conditions 

(0) 0

(1) 0

u

u

=
=

 

where the function ( )p x  and ( )q x  are assumed constant,

3, 2−  respectively, while the function  ( )f x is assumed 1 .  

The true solution of this problem is 2

1 2

1
( )

2

x xu x c e c e= + + , 

where 
1

1/ 2

exp(1)
c = ,

2

1 1
1

2 exp(1)
c

 
= − + 

 
 

Table 1. 
∞

⋅  concentration errors. Linear elements 

Elements  L
∞  

10 4.5593E-004 

40 3.0706E-005 

100 4.9871E-006 

Example 2. Let's consider the same example with mixed  

boundary conditions as below 

(0) 0

(1) 1

u

u

=
′ =

 

The true solution of this problem is 2

1 2

1
( )

2

x xu x c e c e= + + , 

where 
( )1

1
1 exp(1)

2

2exp(2) exp(1)
c

 + 
 =

−
, ( )

( )2

1 exp(2)

2exp(2) exp(1)
c

− +
=

−
 

Table 2. 
∞

⋅  concentration errors. Linear elements 

Elements  L
∞  

10  3.7646E-004 

40 2.2106E-005 

100 3.5089E-006 

 

Fig. 1. Comparison of numerical and exact solution of Example 1. Linear 

elements 

 

Fig. 2. Comparison of numerical and exact solution of Example 2. Linear 

elements 

Example 3. Considering equation 

2 2
( ) 2 ( ) 4 ( )x u x xu x u x x′′ ′− + =   10 20x≤ ≤  

with boundary conditions 

(10) 0

(20) 100

u

u

=
=

 

The true solution of this problem is 

4 2 1
0.00102 0.16667 64.5187x x

x
− + .  

 

Fig. 3. Comparison of numerical and exact solution of Example 3. Linear 

elements 

Table 3. 
∞

⋅  concentration errors. Linear elements 

Elements  L
∞  

20 6.8E-2 

40 5.02E-2 

100 1.02E-2 
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5. Concluding Remarks 

In this article, Galerkin-finite element method is proposed 

to find the approximate solutions of two point boundary 

value problems. In the solution procedure, the first step is to 

make weak formulation and then develop finite element 

formulation. Lastly, weighted average is used for fully 

discretization. As test problem, three different solutions of 

three point boundary value problems are chosen. Also, a 

comparison of numerical and analytical solutions is made and 

found that the proposed scheme has good accuracy. 

Appendix A 

Theorem 1 (Lax–Milgram Theorem). Let H  be a (real) 

Hilbert space and let ( , ) : H HΘ ⋅ ⋅ × → ℝ  be a bilinear form 

on H  which satisfies: 

1. ( ) 1, ,c Hφ ψ φ ψ φ ψΘ ≤ ∀ ∈  

2. ( ) 2

2, c Hφ φ φ φΘ ≥ ∀ ∈  

where 
1

c ,
2

c  are positive constants independent of , Hφ ψ ∈ . 

Let :F H → ℝ  be a (real valued) linear functional on H

such that.  

3. 
3

0c∃ > Hψ∀ ∈
3

( )F cψ ψ<  

Then there exists a unique u H∈  satisfying 

( ), ( )u w F w w HΘ = ∀ ∈  

Moreover, 

2

1
u F

c
≤  

Proof. Let Hφ ∈ be fixed. Then : HΦ → ℝ  defined for 

every w H∈ by ( )( ) ,w wφΦ = Θ defines a continuous linear 

functional on H. For boundedness observe that for each 
w H∈  

( ) 1
( ) ,w w cφ φ ψΦ = Θ ≤  

Hence 1
c φΦ ≤ < ∞  

By the Riesz Representation Theorem therefore, there 

exists a unique element φ
⌢

 such that  

( ) ( )( ) , ,w w wφ φΦ = Θ =
⌢

 w H∀ ∈           (A.1) 

Hence for every Hφ ∈ we define a Hφ ∈
⌢

by (A.1) and 

denote the correspondence ϕ φ
⌢

֏  by φ φ= Λ
⌢

 

( ) ( ), ,w wφ φΘ = Λ  w H∀ ∈ Hφ∀ ∈             (A.2) 

Now Λ   is a linear operator defined on H . We claim now 

that Λ  , defined by (A.2) has a range Ran( )Λ  which is a 

closed subspace of H . Let n nφ φ= Λ
⌢

be a convergent 

sequence, such that 
nφ φ
⌢ ⌢
֏ . Now, since ( ) ( ), ,n nw wφ φΘ = Λ

 
w H∀ ∈ ⇒ ( ) ( ), ,n m n mw wφ φ φ φΘ − = Λ − Λ  w H∀ ∈ . Choose 

n m
w φ φ= − and using (2) get 

2

1
n m n m

c
φ φ φ φ− ≤ Λ − Λ . 

Hence { }n
φ  is a Cauchy sequence in H ,there exist Hφ ∈

such that 
n

φ φ֏ .We now show that φ φ= Λ
⌢

thus showing 

that Ran( )φ ∈ Λ
⌢

, that Ran( )Λ  is closed. 

Now ( ) ( ) 1, ,n nw w C wφ φ φ φΘ − Θ ≤ −  w H∀ ∈  gives 

that  

( ) ( )lim , ,
n

n
w wφ φ

→∞
Θ = Θ w H∀ ∈  

Also ( ) ( ) ( ), , ,n nw w wφ φ φΛ = →
⌢ ⌢

since 

( ) ( ), ,
n n

w w wφ φ φ φ− ≤ −
⌢ ⌢ ⌢ ⌢

. Since ( ) ( ), ,
n n

w wφ φΘ = Λ
 

w H∀ ∈ ⇒ ( ) ( ), ,w wφ φΘ =
⌢

. Hence Ran( )Λ  is closed. Also 

we claim that Ran( ) HΛ =   

Given F on H , by Riesz representation ! Hξ∃ ∈  such 

that ( ) ( , )F w wξ= v H∀ ∈ .Since Ran( ) HΛ = u H∃ ∈ such 

that u ξΛ = .Hence u∃ such that 

( ) ( , ) ( , )F w u w u w= Λ = Θ w H∀ ∈  

For uniqueness, suppose that 1 2u u∃ ≠  such that 

1 2
( , ) ( ) ( , )u w F w u wΘ = = Θ  

w H∀ ∈ . Hence 
1 2

( , ) 0u u wΘ − =
 

2

1 2 1 2 2 1 2 1 2
( , )w H u u u u c u u u u∀ ∈ ⇒ Θ − − ≥ − ⇒ =  

Since ( , ) ( )u u F uΘ = ,(1),(2) give that 0u ≠  2 ( )c u F u≤
 

from which 
2

( )1 F u
u

c u
≤ . Hence  

0 2 2

( )1 1
sup
w

F w
u F

c w c≠
≤ =  
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