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Abstract: Second order Lagrange equations are used for describing dynamics of planar mechanism with rotation joints. 

For calculating kinetic energy of the links local coordinates of velocity vectors are used as well as recursive matrix 

transformations. Kinetic energy quadratic form coefficients are represented by linear combinations of seven independent 

trigonometric functions of generalized coordinates, i.e. basis functions. A number of these functions are connected to 

number of links by quadratic dependence. Constant coefficients in expansions in basic functions are determined from linear 

equation systems, representing kinetic energy of the mechanism in its several nonrecurring configurations with non-zero 

values for one or two generalized velocities. The resulting system of dynamics differential equations is integrated 

numerically with Runge-Kutta method in software environment Mathcad. Efficiency of the proposed method of creating 

and solving dynamic equations is demonstrated by example of numerical solution the direct dynamic problem of three-link 

mechanism. 
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1. Introduction 

Voluminous literature is devoted to methods of creating 

equations of the joined multilink mechanisms dynamics, 

which are the basis of industrial robot manipulating 

systems. One of the main objectives for the authors, 

focused on this problem, is to create a most effective 

algorithm for building-up dynamic equations for those 

kinds of mechanisms. Contrastive analysis [1] shows a 

significant dependence of different approaches efficiency 

on the N number of links in kinematic chain of the 

mechanism and its geometry; for N = 2-6 Lagrange 

description of mechanism dynamics is entirely acceptable. 

In this paper differential dynamics equations of 

manipulator are built-up on the basis of second order 

Lagrange equations. It is commonly known that kinetic 

energy of rigid-body mechanism with finite number of 

degrees of freedom represents positively definite quadratic 

form of generalized velocities. Its coefficients are regarded 

as functions of mechanism generalized coordinates and 

serve as components of inertia matrix of manipulator. This 

paper shows that all components of inertia matrix of a 

planar manipulator with rotating pairs can be represented as 

linear combinations of some set of linearly independent 

trigonometric functions of generalized coordinates. By 

analogy with some properties of vector spaces, these 

functions are defined here [3] as basic functions. 

This paper adduces detailed arguments in favor of basic 

functions’ existence and gives the algorithm of their 

construction for planar n-link manipulator. Alongside, we 

provide the algorithm of finding numerical coefficients at 

basic functions in linear combinations representing inertia 

matrix elements. Essentially, these coefficients are constant 

and invariant with mechanism configuration, thus, they are 

calculated only once during constructing dynamic model of 

the manipulator. 

Introduction of inertia matrix elements as linear 

combinations of basic functions makes algorithm of 

forming the system of differential equations of mechanism 

dynamics much easier. 
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2. Building Mathematical Model 

We consider the motion of a planar multilink mechanism, 

pivoted with fixed base (figure 1). All links are absolutely 

solid objects, changing their position in horizontal plane 

under the action of moments М1 , М2 , … Мn  in knuckle 

joints О1, О2, Оn (Figure 1). Connect every link with local 

system of coordinates Оk xk yk , where axis Оk xk passes 

through axes of component joints, and for the final link (k = 

3) it is pointed arbitrary (Figure 1); О0 x0 y0 — is a fixed 

inertial coordinate system. Identified: components’ mass mk , 

position of their mass centers Ck and central moments of 

inertia Ik about the axes, vertical to the motion plane; 

consider these axes as links inertia main axes. 

 

Figure 1. Computational scheme of mechanism 

The angles of reciprocal link rotation q1, q2, q3, 

measured counterclockwise, are taken as generalized 

coordinates (figure 1) 

Kinetic energy Т of the mechanism is composed of 

kinetic energy of its links: 
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where vk — mass center velocity of a k-link, and 
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angle speed of k link in fixed frame of reference О0 x0 y0. 

Kinetic energy of the considered mechanical system with 

finite number of degrees of freedom is positively definite 

quadratic form of generalized velocities. Coefficients of 

this form depend only on generalized coordinates. [4]  
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In order to study the structure of expressions )q(ija  

assume velocities of links mass centers vk as recursive 

relations. 
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(m = 1, 2,…, n −1),  (4) 

where kkk СO=r - radius-vectors of links’ mass centers; 

m m m 1L O O += - radius-vectors of knuckle joints’ centers of 

links; um – speeds of joints’ centers Оm ; ωk – angular 

velocity vector of the k link. 

While using flat coordinate system Оk xk yk and two-

component vectors it is easy to demonstrate (4) in matrix 

form 
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angular velocity for k link; Т)0,(L mm L= ; T),(r kykxk rr= . 

Consequent application of (5) gives matrix expression 

for center mass velocities of links: 
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Using (6), certain rules of matrix algebra and 

trigonometric identities we get the following expressions 

for squared velocities of links’ mass centers: 
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Equality (7) detects that expression for kinetic energy 

of a separated k-link of the manipulator, coefficients at 

generalized velocities q1, …, qk include linear combinations 

only of the following functions of generalized coordinates:  
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It is easy to notice that all functions in (8), enclosed in 

braces, appear in kinetic energy expression of previous 

links k-1, k-2,   , 3, 2. 

In terms of the conducted analysis, we are able to 

consolidate that quadric form coefficients, expressing 

kinematic energy of the whole n-link manipulator, represent 

linear combinations of the following linearly independent 

functions 
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They will be called basic functions and take the symbols 

of α1 , α2 ,…, αm. Number m of the basic functions is 

connected to n — the number of links of manipulator by 

the formula m 1 n(n 1)= + − . 

Coefficients аij(q) of the quadric form (3), which are 

proved to be the components of the inertia matrix of the 

manipulator can be assumed in the following equation: 
m
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In order to find constants 
)(ij

sc in (9), we take 

advantage of the mode, recommended in the paper [5] for 

calculating elements of the inertia matrix of joint objects. 

Denote ijT (q)  as a kinetic energy rate of mechanical 

system, positioned in random preset configuration 
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qɺ , (k ≠ i, j). Values ijT (q) are quite easy 

to compute with the help of relations obtained previously 

(1), (2) и (6). Subsequently, numeric values of inertia 

matrix elements ija (q)  for this configuration can be 

logically found with the following equations: 
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Suppose, values ija (q)  are determined for m different 

configurations q1 , q2, …, qm of the mechanical system 
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linear algebraic equations  
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with nonzero determinant 

1 1 m 1

1 m m
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... ... ...
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α α

α α
, where 

q1, ... , qm – various configurations of manipulator. In order 

to find all 
)(ij

sс , taking account of coefficients symmetry 

ija (q) , it is sufficient to form and solve n(n-1)/2 systems of 

that kind. 

For describing dynamics of the mechanism we apply 

Lagrange equation of the second race: 
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where Qi = Mi – generalized forces, equal to moments, 

functioning in joints. 

Compute derivatives in the left parts of equations (10): 

∑ ∑∑ ∑∑
= == == ∂

∂
−









∂
∂

+=
∂
∂










∂
∂ −

n

j

k

n

k

j

i

jk

j

n

j

n

k

k

k

ij
n

j

jij

ii

qq
q

a
qq

q

a
qa

q

T

q

T

dt

d

1 11 11 2

1
ɺɺɺɺɺɺ

ɺ

 

We transform it applying (9) and matrix notations: 
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For instance, for a three-link manipulator n=3and basic 

functions number m=7: 

α1 = 1, α2 (q2) = 
2

cos q , α3 (q2) = 
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2 3
sin(q q )+ . In this case, vector functions, included into 

(11) take the following form: 
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With regard for (11) differential equations (10) are 

simplified to: 
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System of n ordinary differential equations (12) of 2n 

order with initial conditions  

i i0
q (0) q= , i i0

q (0) q=ɺ ɺ ,  (i = 1, 2, … , n)    (13) 

represents symbolic model, describing dynamic behavior of 

a planar n-link manipulator at given instant Mi (t, q , qɺ ) in 

the joints. 

3. Numerical Model Implementation 

For integration of differential equations system for 

manipulator dynamics (12) the decisive Runge-Kutta finite-

difference scheme of 4-th order with constant time step was 

applied. The size of step was chosen during numerical 

studies. Differential equations of manipulator’s dynamics 

are not considered as solved in reference to second 

derivatives, thus values of generalized accelerations 1qɺɺ , 2qɺɺ , 

3qɺɺ  on each time step resulted from solving linear system. 

)q,q,(Bq)q(A ɺɺɺ t= , 

where )q()q(A ija= - inertia matrix of mechanism, B – 

vector of the right hand side of the equation (12). 

Calculation example cited below has following values of 

geometrical and inertial parameters of mechanism links: m1 

= 10 kg, m2  = 10 kg, m3 = 8kg ; Lk = 1m; 815
2

kkk LmI = , 

3kkx Lr = , 9kky Lr −= , (k = 1, 2, 3). 

Moment M1, functioning in joint O1 , was given in a form 


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t

t
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i.e. it corresponded to controlling moment, which provides 

the turn of a solid object about fixed axis through the 

terminal angle. 
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For the moments functioning in joints O2  и  O3 , were 

accepted consequently: 

33033

22022

)(

)(

qqqсM

qqqсM

ɺ

ɺ

µ
µ

−−−=
−−−=

               (15) 

where с = 10 Н·m/rad, µ = 20  Н· m/rad ·с
−1

. 

First terms in the expressions (15) correspond to 

moments of joints’ flexible response, obstructing reciprocal 

rotation of links, fixed in positions 202 qq = , 303 qq = . 

Addends in (14) match up moments of resistance forces in 

proportion to angular velocities of reciprocal link rotation. 

Initial values of generalized coordinates and mechanism 

velocities: 

0)0( 0 == ii qq , 0)0( 0 == ii qq ɺɺ , (i = 1, 2, 3).   (16) 

Figure 2 represents the results of numeric equations 

integration (11) with initial conditions (16) and generalized 

forces (14), (15). 

 

Figure 2. Generalized coordinates variation for three link mechanism: 

q1(t), q2(t), q3(t) 

Curves in figure 2 show generalized coordinates changes 

that take place in course of time q1, q2, q3 consequently. 

Mechanism behavior corresponds to a desired rotation 

through the terminal angle. Noted oscillatory damping 

results from dissipative moments (14), functioning in joints 

О2 and О3. 

The computer with Intel processor, which possesses 

operating frequency 2,8 GHz, at time step integration  ∆t = 

0,02s is able to compute mechanism motion lasting 12 s in 

Mathcad 7.0 during about 1s of machine time. 

4. Conclusion 

The way, recommended to form differential equations for 

dynamics of flat jointed multilink mechanism allows 

avoiding lengthy symbolic expressions [2] in order to 

compute elements of inertia matrix, as well as centrifugal 

and gyroscopic components. At the same time, during steps 

of numeric integration of dynamic equations, the 

calculation of current values of all components and 

equation coefficients at every time step is completed with 

explicit end formulas without employing recursive 

algorithms [5]. This method for describing flat joint 

mechanism with number of links N > 3 seems to be of great 

value.  

The paper is written in the context of assignment 

№2014/217 to carry out state projects in scientific field 

within basic part of state project for Ministry of Education 

and Science of the Russian Federation. 
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