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Abstract: The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative 

detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new 

geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.  
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1. Introduction 

The 19
th

 century was a period of rapid development in 

geometry. In 1854 the eminent German mathematician G. F. 

B. Riemann formulated, in a famous memoir [1], an 

extremely general view of geometry which greatly widened 

its scope. Riemann also noted that there are three related but 

distinct geometric systems the usual Euclidean geometry, 

hyperbolic geometry and so-called elliptic geometry which 

is closer spherical geometry. This list of geometries was 

extended in 1870 by the German mathematician F. Klein 

[2] ,[3]. According to Klein there are nine related plane 

geometries including Euclidean geometry, hyperbolic 

geometry and elliptic geometry. Klein's views, which were 

in a way a synthesis of the geometric views of his 

predecessors and of the work of the English algebraist A. 

Cayley appeared in 1872 in his Erlanger Program [4]. 

Klein's broad view of geometry has a universality 

comparable to that of Riemann. 

Thus, just as the fundamental discoveries of  

Lobachevsky, Bolyai, and Gauss destroyed the exclusive 

position of Euclidean geometry, so, too, the classical 

investigations of Riemann and Klein (1854-1872) destroyed 

the exclusive position of  hyperbolic geometry. 

Nevertheless, even today the term "non-Euclidean 

geometry" frequently stands for just hyperbolic geometry 

(less frequently, the plural "non-Euclidean geometries" is 

used to denote just hyperbolic geometry) and elliptic 

geometry, and the existence of other geometric systems is 

known only to specialists. 

The views presented in those discussions have long ago 

lost all scientific significance. Thus, for example, even in 

Klein's "Non-Euclidean Geometry", we find the assertion 

that the geometry of our universe must be either Euclidean, 

hyperbolic, or elliptic; this in spite of the fact that the 

scientific unsoundness of this viewpoint, at least in its 

original formulation, followed from Einstein's special theory 

of relativity of 1905 and, even more decisively, from his 

general theory of relativity of 1916. 

The fact that hyperbolic geometry is linked to the issue of 

the independence of the parallel axiom and clarifies the role 

of that axiom in Euclidean geometry, is a strong argument in 

favor of its pedagogical value. On the other hand, hyperbolic 

geometry is rather complex—it is definitely more complex 

than Euclidean geometry—and yet the non-Euclidean nature 

of a geometry need not imply complexity. 

The main distinction of Galilean geometry is its relative 

simplicity, for it enables the student to study it in relative 

detail without losing a great deal of time and intellectual 

energy. Put differently, the simplicity of Galilean geometry 

makes its extensive development an easy matter, and 

extensive development of a new geometric system is a 

precondition for an effective comparison of it with 

Euclidean geometry. Also, extensive development is likely 

to give the student the psychological assurance of the 

consistency of the investigated structure. Another distinction 

of Galilean geometry is the fact that it exemplifies the 

fruitful geometric idea of duality. These reasons make me 

think that one should give serious thought to a mathematics 

program for teachers' colleges which would include a 

comparative study of three simple geometries, namely, 

Euclidean geometry, the geometry associated with the 

Galilean principle of relativity, and the geometry associated 

with Einstein's principle of relativity as well as an 
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introduction to the special theory of relativity [5].  

Finally, the now popular name "Galilean geometry" is 

historically inaccurate: Galileo, whose works date from the 

beginning of the 17
th

 century, did not in fact know this 

geometry, whose discovery was necessarily preceded by one 

of the greatest intellectual triumphs of the 19
th

 century the 

emergence of the idea that many legitimate geometric 

systems exist. A more accurate name would be "the 

geometry associated with the Galilean principle of 

relativity." This name is too long for repeated use and that is 

why we have decided, somewhat reluctantly, to use the name 

"Galilean geometry." This name is partially justified by the 

brilliant clarity and completeness with which Galileo 

formulated his principle of relativity, which leads directly to 

the non-Euclidean geometry considered in this article[6],[7]. 

 

Let’s { }0, ,x y  affine coordinate system is given on two 

dimensional 
2A − affine plane, and define the given 

{ }1 1,X x y
→

 and { }2 2,Y x y
→

vector product as below 

1 1 2
( )X Y x x

→ →
⋅ = ⋅  

if       
1

( ) 0X Y
→ →

⋅ =    then    (1) 

2 1 2
( )X Y y y

→ →
⋅ = ⋅  . 

2. Galilean Geometry 

Definition: 
2A − affine plane which is defined as the 

vectors’  scalar multiplication as in formula (1) is called 

2Γ − Galilean plane. 

Let’s take the modulus of vector, similar to in Euclidean 

plane, as scalar product of vector which is defined under 

square root as below, that is 

( )X X X
→ →

= ⋅
�

     (2) 

Well, for the distance between two points 
1 1( , )A x y  and 

2 2( , )B x y is equal to the vector modulus that connects these 

two points which is AB AB=
����

. Since { }2 1 2 1;AB x x y y= − − , 

  ( ) 2

1 2 1 2 1
1

( )AB AB AB x x x x= ⋅ = − = −
���� ����

 

If    1 0AB =    then     (3) 

( ) 2

2 2 1 2 1
2

( )AB AB AB y y y y= ⋅ = − = −
���� ����

 . 

Plane geometry whose distance is defined as in formula (3) 

is called as Galilean geometry . 

 

In this article, our fundamental aim is to introduce you 

with vectors’ scalar product in (1) and the geometric ideas 

that are the reasons of defining the distance between the two 

points in (3) which are determined. 

As is well known, in three dimensional 
3A − affine space, 

if scalar product of { }1 1 1, ,X x y z
→

 and { }2 2 2, ,Y x y z
→

 is 

defined as follows  

( ) 1 2 1 2 1 2
XY x x y y z z= + −
����

     (4) 

then it is called 1

3
R − Minkoswki space.  In this space, 

the modulus of vector is 

( ) ( )2 2 2 2

2 1 1 1 1
X X X x x x y z= ⋅ = − = + −
��� ��� ���

 (5) 

positive undefined magnitude. 

 

( ) 0X X⋅ >
��� ���

 , X
���

- has real 

If   ( ) 0X X⋅ =
��� ���

 , X
���

- has zero  

( ) 0X X⋅ <
��� ���

 , X
���

- has imaginary magnitudes. 

Vectors whose modulus are equal to zero called isotropic 

vectors. Isotropic vectors form isotropic cone of  
1

3
R − Minkowski space, and it is defined with the following 

equation 

2 2 2
0x y z+ − = .    (6) 

We have already explained clearly that the distance 

between two points is equal to the vector modulus which  

connects these points. By the way, the distance between 

1 1 1( , , )A x y z  and 
2 2 2( , , )B x y z in 1

3
R − Minkoswki space is 

defined as below, 

( ) ( ) ( ) ( )2 2 2

2 1 2 1 2 1
AB AB AB AB x x y y z z= = ⋅ = − + − − −

���� ���� ����  

If we write the distance for points that are closer to each 

other as differentiation of coordinates, we get 

2 2 2 2ds dx dy dz= + − .           (7) 

In this distance, it is possible to see metrica which is 

non-euclidean and express Einstein’s relativity theory. 

 

Now, let’s show occurrence of Galilean metric in 
1

3
R − Minkowski space with 1

3
( , , )x y y RΩ ⊂  partial sum. 

In fact, for 
1 2,M M ∈ Ω  we get 

( )1 2 1 2 1 2 2 1
M M M M M M x x= ⋅ = −

������� �������   

But, when 2 1 0x x− = the points 
1 1 1 1( , , )M x y z  and 

2 2 2 2( , , )M x y z  are not overlapped. The lenght between them 

corresponds to the sector which is equal to 2 1y y− .  

 

If we accept this sector’s length as second distance, it is 

possible to see that the distance between the two points in 
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increasing ( , , )x y yΩ  space which is equivalent to the 

concept of distance in Galilean geometry. 

3. Theorem 

Galilean geometry is available in planes which are tangent 

to isotropic of 1

3
R − Minkoswki space. 

Proof: The equation of isotropic cone in 1

3
R − Minkowski 

space is  

2 2 2
0x y z+ − =  . 

Equation of plane which is tangent to isotropic cone at 

point ( , , )a b c  is written as  

0ax by cz+ − = . 

Since the coordinate of point ( , , )a b c  belongs to the 

isotropic cone, then it becomes  

2 2 2 0a b c+ − =  . 

Let’s take any two points like 
1 1( , )M x y  and 

2 2( , )N x y  at 

Π − tangent plane. Since these points belong to tangent 

plane, then the following equations satisfy 

1 1 1 0ax by cz+ − = ,  2 2 2 0ax by cz+ − = . 

By benefiting from the equation 2 2
c a b= + , we can get 

the following expressions 

1 1 1
2 2 2 2

a b
z x y

a b a b
= +

+ +
 

and 

2 2 2
2 2 2 2

a b
z x y

a b a b
= +

+ +
 . 

For the distance between the two points formula in 
1

3
R − Мinkowski space, we get 

2 2 2 2

2 1 2 1 2 1( ) ( ) ( )MN x x y y z z= − + − − −  

 But, considering 

2

2

2 1 2 1 2 1
2 2 2 2

( ) ( ) ( )
a b

z z x x y y
a b a b

 
− = − − − 

+ + 
 

if we substitute this expression to its own place, we get the 

following equation 

2

2

2 1 2 1
2 2 2 2

( ) ( )
b a

MN x x y y
a b a b

= − + −
+ +

. 

The magnitude which is expressed with this equation has 

{ }2 1 2 1,x x y y− −  coordinates in plane. 

The coordinates of vector gives the length for projection 

which is in the direction of vector 
2 2 2 2

,
b a

a b a b

  
 
 + + 

. 

If  2 1 0x x− = ,  then 

2

2

2 1
2 2

( )
a

MN y y
a b

= −
+

. 

It is seen that, the distance between the two points in 

Π − tangent plane is proportional to the distance between the 

two points in Galilean geometry. This proves that the 

geometry in this plane is Galilean geometry. 

4. Conclusion 

The history of non-Euclidean geometry and especially 

one of the non-Euclidean which is called Galilean geometry 

briefly have been explained. 
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