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Abstract: In this paper, A multi-domain differential quadrature method is employed to solve a mode III crack problem. 
The domain of the problem is assumed to be irregular rather than it possesses discontinuities, (cracks). The entire domain is 
divided into several subdomains, according to the crack locations. A conformal mapping is applied to transform the 
irregular subdomains to regular ones. Then the differential quadrature method is employed to solve the problem over the 
transformed domains. Further, it’s focused on the crack regions by applying the localized version of differential quadrature 
method. The out of plane deflection is obtained at the immediate vicinity of the crack tips, such that the stress intensity 
factor can be calculated. The obtained results are compared with the previous analytical ones. Furthermore a parametric 
study is introduced to investigate the effects of elastic and geometric characteristics on the values of stress intensity factor. 
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1. Introduction 

Determinations of stress intensity factors, (SIFs), are one 
of the most important problems in fracture mechanics.  This 
problem has been extensively studied by many authors 
using various analytical and numerical techniques. In 
general, there are two analytical techniques for solving 
such problems. The first one employees complex analysis 
while the second applies integral transformation with 
asymptotic analysis to reduce the problem to a system of 
singular integral equations [1-3]. The finite element method 
(FEM) and boundary element method (BEM) are the most 
frequently numerical techniques for solving crack problems. 
FEM needs to describe a special element at the immediate 
vicinity of the crack tips. The compatibility between this 
element and the others presents an additional problem. So, 
FEM is an expensive technique for solving crack problems 
[4-6]. Both the direct and indirect BEMs lead to a 
mathematical degeneracy when the crack tip is considered 
as a boundary node [7-9]. This difficulty has been 
overcome by several special BEMs. One of these methods 
based on dividing the cracked body into sub-regions along 
the cracks More recently such that each sub-domain does 
not contain any cracks. This method results in a larger 

matrix due to the extra nodes along the sub-region 
interfaces and may lead to ill-conditioned matrix. 

More recently, the differential quadrature method (DQM), 
is introduced for solving several engineering problems, 
such that in thermodynamics, aerodynamics, structural and 
fracture mechanics. The method possesses the capability to 
achieve accurate results with a minimal computational 
effort [10-13], The classical version of DQM can’t deal 
with discontinuous or irregular domains. So, a new version 
of DQM, (termed by multi-domain differential quadrature 
technique), is developed for solving discontinuity problems. 
The philosophy of multi-domain DQM inherits the merits 
of the flexibility of finite element method and at the same 
time retains the high accuracy of the DQM. The main 
advantages of multi-domain DQM can be summarized as 
follows: multi-domain DQM is able to deal with problems 
with either geometric or material discontinuity, therefore it 
is recommended for solving crack problems. Also it can 
deal with problems with doubly or multiply connected 
regions. Further, it is able to treat problems with 
inconsistent boundary conditions [14-18]. 

This work extends the applications of a multi-domain 
DQM to solve a mode III crack problem in an irregular 
plate. The strategy is to decompose the whole domain into 
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several sub-domains according to crack branches. Then an 
appropriate conformal mapping is applied to transform 
each irregular sub-domain, (physical domain), to a regular 
one, (computational domain), such that DQM can be 
applied. The out of plane deflection is obtained at the 
immediate vicinity of the crack tips, such that the stress 
intensity factor can be determined. The obtained results 
well agreed with the available analytical ones. Further a 
parametric study is introduced to investigate the effects of 
elastic and geometric characteristics on the values of stress 
intensity factor. 

2. Formulation of the Problem 

Consider a cracked irregular plate made of isotropic 
material as in Fig. 1. The external boundaries of the plate 
are subjected to anti-plane shear tractions while the crack 
surfaces are free of tractions. 

 

Fig. 1. Decomposition of the original domain 

The equilibrium equation along the out of plane direction, 
z, can be written as: 

, 0,            ( , ),iz i i x yτ = =            (1) 

Where, ( );?  iz i x yτ = are the components of the anti-
plane shear stress. 

The relation between the stress and out of plane 
displacement, W is given by: 

,  ,        ( , )iz iGW i x yτ = =            (2) 

Where G is shear modulus. 

On substitution from Eq. 2 into Eq. 1 the equilibrium 
equation of the problem can be reduced to: 

, 0, ( , ).ii i x yW = =              (3) 

The external boundary conditions can be described as: 

1( , ) ( , ), ( , )w x y w x y x y= ∈Γ            (4) 

( ) 2( , )  ( , ), Gxz xx y x y x yτ τ= ∈Γ       (5) 

( ) 2( , )  ( , ), Gyz yx y x y x yτ τ= ∈Γ       (6) 

where  1 2
 Γ Γ = Γ∪  is the whole external boundaries of 

the plate. , andxz yzW τ τ are known functions. 
Further the stresses along the crack surfaces can be 

described as: 

( , )
( , )lim   0 ,   ( , )  ( 1, )  

iz
Lx y k

x y i x y and k nτ
→±

= = =    (7) 

where kL is location of k
th branch of the crack. n is the 

number of crack branches. 

3. Solution of the Problem 

The solution of the problem can be implemented through 
the following steps: 

• Decompose the original domain, along the crack 
surfaces, into m sub-domains as shown in Fig.1. 

• Employ appropriate geometric mapping to 
transform each irregular sub-domain in x-y plane, 
(physical domain), to a rectangular one in ξ η−  
plane, (computational domain), see Fig. 2. 

 

Fig. 2. Geometric transformation from the physical domain to a 

computational one. 

This mapping may be done according to [19]: 
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where the functions ( , ) and ( , )S Si jξ η ξ η represents the 

four boundary parametric curves of the original physical 
domain and 

( , )S i j
ξ η donates the x and y coordinates of the 

point corresponding to the coordinates ( , )i j
ξ η in the 

computational space. 
• For each sub-region, apply chain rule to transform 

the governing equations form x-y system to that in 
ξ- η one. 

• Apply the method of differential quadrature to 
reduce the transformed governing equations to the 
following system of linear algebraic equations [20-
21]  

2
, , , ,

1 1
0; 1,

N M
l l l l
i k k j l j k i k

k k
C w P C w l m

= =
+ = =∑ ∑    (9) 

Where the super script l refers to lth sub-domain, (l=1,m). 
Pl is a parameter resulted from geometric mapping of lth 

region from irregular shape to a regular one. 

,, , l

j k

l
i k

CC  are the weighting coefficient of the 2nd order 

derivatives in ξ and η-directions, respectively. 
,
l
i kw are the 

unknown functional nodal values for each transformed sub-
region in ξ- η plane. 

The quadrature grid is designed with nodes as the roots 
of Chebyshev polynomials [20], such as:  

1
cos( ) , 1,

1
i

i N
i N

ξ π−= − =
−

            (10) 

 
1

cos( ) , 1,
1j

j
j M

M
η π−= − =

−
            (11) 

Where N, M is the number of grid points in ξ and η-
directions, respectively 

Along the interface of each adjacent sub-region, the 
continuity of conjunctiva nodes is also considered. 

4. Numerical Results 

A quadrature scheme is designed for solving mode III 
crack problems. The scheme suggests to initially solve the 
problem, over the entire domain by using a coarse grid then 
to refine the results, at immediate vicinity of the crack tips, 
over another, localized, fine grid as shown in Fig. 3, [22, 
23]. 

 

Fig. 3. Localized differential quadrature grid at the immediate vicinity of 

crack tips 

Knowing the values of the anti-plane displacement, W,  

at immediate vicinity of the crack tips, the values of mode 
III stress intensity factors can be calculated as [24]: 

( , )

sin( / 2) 2 /

W x y G
K

III rθ π
=                     (12) 

where G is the shear modulus of the plate, r is the 
distance from the crack tip to the position at which KIII is 
calculated. θ is the angle between the position and the 
direction of the crack, as shown in Fig.4. 

Table 1. A comparative study: Variation of KIII with crack length. 

Crack 

length 

ratio: 

2a/D 

Exact KIII [24] Obtained KIII 

Error=

III III

III

K K

K

obtaied exact

exact

−

 

Quadrature scheme description 

Coarse grid 

discretization : 

N*M 

Dimension of 

localized grid 

Localized (fine) 

grid 

discretization : 

N1*M1 

r 

0.05 0.396741 0.395813 0.002339 21*21 0.15*0.11 15*13 0.0087 

0.10 0.562822 0.568665 0.010381 21*21 0.31*0.30 18*13 0.01 

0.15 0.692934 0.690811 0.003064 21*21 0.31*0.40 21*13 0.0081 

0.20 0.806126 0.804046 0.002580 22*22 0.50*0.50 22*13 0.013 

0.25 0.910180 0.904929 0.005769 25*25 0.55*0.61 26*13 0.0128 

0.30 1.009481 1.012416 0.002907 27*27 0.66*0.65 26*13 0.0162 

0.35 1.107069 1.091346 0.014202 28*28 0.76*0.71 29*13 0.0174 
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For practical importance, the obtained results are 

normalized, (divided by 
0 Dτ ). Also, to ensure the validity 

of proposed scheme, the obtained results are compared with 
the previous analytical ones [24] as shown in table 1. 

( ) 2 tan( )III

a
Normalized K exact

D

π=         (13) 

Where D defines the width of the plate, as illustrated in 
Fig.4.  

Further, a parametric study is introduced to investigate 
the effects of elastic and geometric characteristics of the 
problem on the values of normalized stress intensity factors. 

 

Fig. 4. Rectangular plate with crack. 

Figures 5-7, 9 and 10 show that the values of KIII 
increase with increasing of crack length. While, the values 
of KIII decrease with increasing of aspect ratio: H/D, as 
shown in Fig.5. 
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Fig. 5. Variation of normalized KIII with the crack length and aspect ratio. 

Also, Figure 6, shows that the values of KIII decrease 
with increasing the distance between the crack surfaces and 
the boundaries. 
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Fig. 6. Variation of normalized KIII with the crack length and the vertical 

crack location. 

The values of normalized KIII  slightly increases with 
increasing of crack orientation angle ψ up to ψ ≈ 25o  then 
they decease beyond this value, as shown in Fig. 11. Also, 
the same behavior of the normalized KIII is clearly reported 
for different radii of curvatures, as shown in Fig.12. 

0 4 8 12

Shear modulus:G

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e
d

 K
II

I

 

Fig. 7. Variation of normalized KIII with the crack length and shear 

modulus. 

 

Fig. 8. Irregular  plate with a crack 
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Fig. 9. Variation of normalized KIII with the crack length and the radius of 

curvature. 
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Fig. 10. Variation of normalized KIII with the crack length and distance 

from the crack surfaces to the boundary apexes. 
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Fig. 11. Variation of normalized KIII with crack orientation angle and  

crack length. 
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Fig. 12. Variation of normalized KIII with crack orientation angle ψ and 

the radius of curvature α1 at 2a/D=0.2. 

5. Conclusion 

A hybrid technique consists of multi-domain DQM and 
conformal mapping is applied for solving cracked irregular 
plate subjected to anti-plane shear loading. This work can 
be considered as an extension for the applications of DQM 
in discontinuity problems. The accuracy of the obtained 
results is achieved by comparing them with the previous 
ones. Further a parametric study is introduced to explain 
the influence of elastic and geometric characteristics on the 
values of stress intensity factor. 
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