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Abstract: A second-order hierarchical fast terminal sliding mode control method based on disturbance observer 
(DOSHFTSM) is proposed for a class of fourth-order underactuated systems. In the first step, the fourth-order underactuated 
system is divided into two subsystems, and the integral sliding surface is designed for each subsystem. Then, the first-order 
fast terminal sliding surface is defined by using the integral sliding surface and its derivatives of each subsystem, and the 
switching control items of the system are designed according to the first-order fast terminal sliding surface of the subsystem. 
Secondly, the second-order sliding surface is designed by using the first-order fast terminal sliding surface of each subsystem. 
On the premise of ensuring the stability of Lyapunov, the switching control term is designed by using the variable coefficient 
double power reaching law to eliminate the system jitter. Finally, based on the principle of hyperbolic tangent nonlinear 
tracking differentiator, a hyperbolic tangent nonlinear disturbance observer (TANH-DOC) is designed to estimate the 
uncertainties and external disturbances of the system and compensate them to the sliding mode controller to improve the 
robustness of the system. The stability of the system is proved by using Lyapunov principle. The validity of this method is 
verified by numerical simulation and physical simulation of inverted pendulum system. 

Keywords: Underactuated System, Disturbance Observer, Hierarchical Sliding Mode, Double Power Reaching Law, 
Stability Analysis 

 

1. Introduction 

In recent years, the public pay more and more attention to 
the improvement of underactuated systems. It usually appears 
in mechanical systems where the actuator is less than the 
control degree of freedom. It is widely applied in space 
robots, underwater robots, structural flexible robots, bridge 
cranes and other practical systems, and has published many 
papers on underactuated system control [1-12]. In a nutshell, 
controller design and stability analysis of nonlinear 
underactuated dynamic systems have always been an 
important research field. 

Sliding mode control embraces premium robustness to 
system matching uncertainties and modeling errors. It is a 
kind of nonlinear control method with great significance that 
is widely used in various kinds of under actuation [13-17]. 

But, the traditional sliding mode control method makes the 
system state gradually converge to the equilibrium point on 
the sliding mode surface, which makes it difficult to achieve 
convergence in a finite time. So, terminal sliding model 
(TSM) greatly improves the convergence speed of the system 
near the equilibrium point by introducing terminal attractors 
[18-21]. However, in the traditional TSM, when the system 
state approaches the equilibrium state, the convergence speed 
of the nonlinear sliding mode is slower than that of the linear 
sliding mode. Therefore, a fast terminal sliding mode 
(FTSM) is proposed, which not only introduces the terminal 
attractor to make the system state converge in a limited time, 
but also retains the fast convergence of linear sliding mode 
when approaching the equilibrium state, thus realizing the 
fast and accurate convergence of the system state to the 
equilibrium state [22-27]. However, a large control signal 
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will be generated probably in the steady state and there will 
be chattering when there is strong disturbance in the system. 
A novel sliding mode controller based on extended 
disturbance observer is studied for a class of underactuated 
systems in reference, aiming to cut down the chattering effect 
in [28]. But small oscillation still exists in the system state 
when disturbance is added. Document [29] proposes an 
adaptive hierarchical sliding mode control method based on 
extended state observer for the practical application of 
spherical robots. The designed closed-loop control system of 
the spherical robot possesses robust and adaptive capabilities 
to overcome the uncertain rolling resistance but the response 
time of the system is slow and chattering exists. The 
proposed controller strategy that the integral sliding mode 
control and the optimal feedback control law is composed in 
[30]. The main advantages of the proposed approach are 
ensuring the robustness throughout the whole system 
response against the uncertainties, decrease the chattering 
effect and eliminate the reaching phase. But the simulation 
experiment system is linearized. A unified adaptive second 
order sliding mode control method is devised. By using the 
proposed control structure, the upper bounds of uncertainties 
are not required, the over-estimation of the control gains are 
avoided, and the chattering of the conventional sliding mode 
controllers can be attenuated in [31]. But only simple 
disturbance phenomena are analyzed, and complex 
disturbance factors are not analyzed. 

In this paper, a hierarchical second-order fast terminal 
sliding mode based on disturbance observer control approach 
is proposed for a class of underactuated systems. The 
contributions of this paper are as follows. 

1. The sliding mode controller are designed by using the 
second-order hierarchical fast terminal sliding mode 
surface and variable coefficient double power reaching 
law to reduce the chattering of the system. 

2. A hyperbolic tangent nonlinear disturbance observer, 
which is synchronized with it, has been designed to 
estimate the uncertainty and external disturbance of the 
system. 

3. The stability of sliding surface at all levels is proof. 
Meanwhile, the effectiveness of the method is verified 
by the numerical simulation experiment of inverted 
pendulum. 

The rest of this paper is organized as follows. A class of 
underactuated systems is formulated in Section 2. An 
effective second-order hierarchical fast terminal sliding mode 
Controller based on disturbance observer is devised, and the 
stability of sliding surface at all levels is analyzed in Section 
3. Section 4 conduct the simulation and present the results. 
Finally, some conclusions are given in Section 5. 

2. Problem Formulation 

Consider the following dynamic model of a cart-pole 
system as [32]: 
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where 1 2 3 4[ , , , ]'x x x x=x  represent the state variable; 

1 1 2( , ), ( , ), ( , )f t b t f tx x x  and 2 ( , )b tx  denote the nonlinear 

functions representing system dynamics; ( )u t indicates the 

control input; 1( )d t and 2 ( )d t are bounded external 

disturbances and system parameter perturbations. 
The terms 1( , )f tx  and 2 ( , )f tx  can be expressed as: 
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where 1 '( , )f x t  and 2 '( , )f x t  are the known parts of 1( , )f x t  

and 2 ( , )f x t . 1( , )f x t∆  and 2 ( , )f x t∆  are the unknown parts of 

1( , )f x t  and 2 ( , )f x t . 

The dynamic equation of (1) can also be written as: 
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where 1 1 1( , ) ( )n f t d t= ∆ +x  and 2 2 2( , ) ( )n f t d t= ∆ +x  are the 

terms of bounded external disturbances and system parameter 
perturbations. 

Assumption 1. The system perturbations are assumed to be 
bounded as 1 1n ≤ δ  and 2 2n ≤ δ , where 1δ and 2δ are 

unknown positive constants. 

3. Main Results 

The control objective of the system is to design a robust 
controller that enables accurate and fast stable even in the 
presence of model uncertainties and external disturbances. In 
order to reach the target, a hierarchical second-order fast 
terminal sliding mode control scheme combining disturbance 
observer is designed. 

3.1. Disturbance Observer for Hyperbolic Tangent 

Nonlinear Function 

The tracking differentiator (TD) was first proposed by the 
researcher Han and others in China in 1994 [33]. It is used in 
practical engineering problems to extract continuous filtered 
signals and differential signals from discontinuous or random 
noise measurement signals. 

In this paper, nonlinear tracking differentiator is 
constructed by hyperbolic tangent nonlinear function as 
follows [34]. 
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where 1 1 2 20, 0, 0, 0, 0R m h m h> > > > >  are design 

parameters. The stability and convergence of system (4) are 
proved and detailed regulating rules of design parameters are 
given in [34]. A special example of TANH-TD can be 
obtained when 1 2 1 2,m m h h= = , so that it has fewer tuning 

parameters and will be more convenient for engineering 
applications. 

Theorem 1. No loss of generality, we consider the 
underactuated mechanical system (3). The design of 
nonlinear disturbance observer based on tracking 
differentiator, described as: 

2 1 1 1

2
1 1 1 2 2 2 2 1

4 2 2 2

2
2 1 1 4 4 2 2 2

ˆ ˆ( ) ( )

ˆ ˆ ˆ[ tanh( ( )) tanh( / )]

ˆ ˆ( ) ( )

ˆ ˆ ˆ[ tanh( ( )) tanh( / )]

x f b u n

n R m h x x m h n R

x f b u n

n R m h x x m h n R

 ′= + +

 = − − +


′ = + +


= − − +

ɺ

ɺ

ɺ

ɺ

x x

x x
   (5) 

where 2 1 4 2ˆ ˆ ˆ ˆ, , ,x n x n  are the estimates of 2 1 4 2, , ,x n x n , 

respectively. If 0, 0T R> > , we get: 

2 2
0

4 4
0

ˆlim | | 0

ˆlim | | 0

T

R

T

R

x x dt

x x dt

→∞

→∞

 − =

 − =


∫

∫
                               (6) 

In other words, 2 2 4 4ˆ ˆ,x x x x→ → . In addition, we have 

1 1 2 2ˆ ˆ,n n n n→ →  according to the equation of system (3) 

and (5). 
Proof: When R → ∞ , the following equation can be 

obtained： 
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That is, the varies in 1̂n  and 2n̂ is much faster than 

1 1( ) ( )f b u′ +x x  and 
2 2( ) ( )f b u′ +x x , respectively. 

Meanwhile, we can clearly get the equation as: 
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Therefore, when we regard 1 1 1̂" ( ) ( ) "f b u n′ + +x x  as 2" "x  

and 2 2 2ˆ" ( ) ( ) "f b u n′ + +x x  as 4" "x , it is clear that (5), (6) 

are established according to theorem of [34]. This is the 
proof of completion. 

Remark 1. Please note that in the actual system, any 
control input is limited. In other words, bandwidth and speed 
are bounded for any control input u . Therefore, it is 

reasonable to assume that the varies in 1̂n  and 2n̂  is much 

faster than 1 1( ) ( )f b u′ +x x  and 2 2( ) ( )f b u′ +x x . 

3.2. Second-Order Hierarchical Fast Terminal Sliding 

Mode 

Corresponding to the two groups of the state variables 
( 1 2,x x ) and ( 3 4,x x ) of two subsystems we construct a pair 

of suitable integral sliding surfaces as: 
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where 1λ  and 2λ  are positive constants. 

According to (9), the following first- level sliding surface 
is defined 
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where 1α , 1β , 2α , 2β  are positive constants. 1 1 2 2, , ,q p q p  are 

all positive odd numbers and 1 1 2 2,q p q p< < . Using the 

equivalent control method the equivalent control law of the 
subsystems can be obtained as: 
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The under-actuated system has the characteristic of 
controlling the multiple outputs with less input. Therefore, 
the total control input includes the equivalent inputs for all 
subsystems. We define the total control as: 

1 2eq eq swu u u u= + +                                   (13) 

where swu is the switch control part of the sliding controller. 

According to the first- level sliding surface of all subsystem, 
defining the second-level sliding surface and double power 
approaching law with the variable coefficient as: 

1 1 2 2sosm sosmS a S a S= +                             (14) 
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where 1 2=[ , ]sosm sosmS SM . 1a , 2a are sliding-mode parameters 

which maybe remain constant or change according to 
different conditions. 1k , 2k , 1c , 2c  are positive constants and 

10 1c< < , 2 1c > . 

According to the Lyapunov stability theorem, we derive 
the switching control law. The positive definite Lyapunov 
energy function can be defined as follows. 
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Differentiating ( )V t with respect to time t obtains 
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The switching control law is defined as: 
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Therefore, the general control law of the system is given as 
follows. 
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3.3. Stability Analysis 

Lemma 1. [35]: Set , ( ), :n nM R f f R∈ ⊂ =ɺx x x R→ as 

the continuous functions defined in the equilibrium point 
region M . Assuming that a continuous function :V M R→
satisfies the following conditions: 

1) V is positive definite. 

2) Vɺ is negative definite except for the equilibrium point. 

3) Real number 0, 0k > >α and region N M⊂ make

0V kV+ ≤ɺ α , the function ( )f=ɺx x converge sat balanced 

zero point with infinite time. 
Theorem 2. The under-actuated system (3) is adopted in 

the control law of (19), and the second-level sliding surface 
S and Sɺ  converge to the following regions in a finite time. 
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Lemma 1 shows that the system converges with respect to 
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equilibrium zeros in finite time. Since
*
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outside the area 0V ≤ɺ . Therefore, the convergence region at 
this time is (28). 

By synthesizing (26) and (28), S can converges to the 
following regions in finite time. 
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Substituting the previous equation into (15), we can get: 
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In conclusion, the theorem 2 is proved to be correct. 
Theorem 3. If the control law of (19) is used for the 

underactuated system (3) and the sliding surface is designed 
as (10), (14). The first-layer sliding mode surfaces 

1 2sosm sosmS S，  are also asymptotically stable. 
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we can easily get that 1 2 1 2, , ,s L s L s L s L∞ ∞ ∞ ∞∈ ∈ ∈ ∈ɺ ɺ . 

Furthermore, we have 
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Owing to 2

0
S d

∞
< ∞∫ τ and 2 2 2 2

1 2 1 2 1 1 2 22 sosm sosm sosm sosma a S S a S a S≤ + , 

the following inequality is satisfied. 

2
1 2 1 2 1 1 2 2

0 0
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≤ + < ∞∫ ∫τ τ    (32) 

According to (31) and (32), we can have 

2 2
1 2

0 0
,sosm sosmS d S d

∞ ∞
< ∞ < ∞∫ ∫τ τ              (33) 

Therefore, 1 2 1 2, , ,s L s L s L s L∞ ∞ ∞ ∞∈ ∈ ∈ ∈ɺ ɺ , and it can be 

easily obtained that 1lim 0sosm
t

S
→∞

= in terms of the Barbalat’s 

lemma. Same argument, it can be attested that 2lim 0sosm
t

S
→∞

= . 

In summary, the Theorem 3 is proved to be correct. 

4. Simulation Results 

In order to validate the suggested control technique, a car 
inverted pendulum system is simulated some comparisons 
between the suggested technique and the methods of [36, 24] 
are presented. 

The schematic diagram of the inverted pendulum system is 
shown in Figure 1. The dynamic equation of the cart-pole 
system can be exhibited in the form of (3) with the functions 

1 1 2'( , ), ( , ), '( , )f x t b x t f x t  and 2 ( , )b x t  as: 
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      (34) 

where tm is the total mass of the cart-pole system which 

contains the quality of the pole ( pm ) and the mass of the cart 

( cm ), 1x represents the swing angle of the pole, 2x expresses 

the swing speed of the pole, 3x denotes the position of the 

cart, 4x indicates the cart velocity. Contrasting control 

schemes are considered as below: 
(a) The sliding surface, reaching law and controller of 
hierarchical sliding mode control method (HSM) based on 
exponential reaching law are as follows [30]： 

1 1 1 2 2 2 3 4 1 1 2 2

1 2
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α α
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α α

ρ

x x

x x
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(b) The sliding surface, reaching law and controller of 
hierarchical fast terminal sliding mode control method 
(HFTSM) based on exponential reaching law are as follows 
[21]: 
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For the simulation implementation, the constant 
parameters and initial conditions of the cart-pole system are 

set as 1cm kg= , 0.05pm kg= , 0.5L m= , 29.8 /g m s= ,

(0) [ 30 / 57.3,0,0,0]x = − . The disturbances and uncertainties 

terms are given as 1 2( )= ( )=0.0873sin( )d t d t t ,

1 1( , )=0.1sin( ( ))f t x t∆ x  and 2 3( , )=0.1sin( ( ))f t x t∆ x . The 

parameters of controllers are provided in Table 1. 

 

Figure 1. Inverted pendulum system. 

In order to better analyze the stability of the system, the 
following performance evaluation indicators are given: 
(1) Integral of error squared value (ISE) 

2

0

ISE ( )

t

ix d= ∫ τ τ                                     (37) 

(2) Integral of time-multiplied absolute value of error 
(ITAE) 

0

ΙΤΑΕ = ( )

t

ix d∫τ τ τ                                  (38) 

The performance index values of the inverted pendulum 
system for the above two evaluation methods are shown in 
Table 2. It can be seen from Table 2 that the performance 
evaluation index value of the state 1x and 3x of the control 
method used in this paper are smaller than other control 
methods. Therefore, the system stability of DOSHFTSM is 
better than that of other control methods. 

Table 1. Controller parameters. 

Parameters HSM HFTSM DOSHFTSM 

1β  - 0.01 0.01 

2β  - 1 1 

1α  3.5 2.7 3.5 

2α  1.5 0.01 0.01 

1 1q p  - 19/21 19/21 

2 2q p  - 19/21 19/21 

ρ  1 1 - 
w  0.8 0.8 - 

1a  -1 -1 -1 

2a  1 1 1 

1λ  - - 0.001 

2λ  - - 0.001 

1k  - - 0.8 

2k  - - 1 

1c  - - 0.5 

2c  - - 1.5 

1 2m m=  - - 1 

1 2h h=  - - 5 

R  - - 25 

Table 2. Performance indicators of inverted pendulum system. 

 
ISE ITAE 

1x  3x  1x  3x  

HSM 0.0657 0.4754 0.0032 0.0080 
HFTSM 0.0611 0.4525 0.0029 0.0085 
DOSHFTSM 0.0406 0.2686 0.0022 0.0063 

Figures 2-4 shows the response curves of the system 
state, the sliding surfaces, and the system phase trajectory, 
respectively. It can be seen from them that the system state 
can converge to the equilibrium point at a faster speed 
under the control of the proposed scheme and can 
intuitively show that the control process of the proposed 
method is smooth and jitter-free. Figure 5 show that the 
control method of the present invention controls the input 
signal to be smooth, which can reduce the wear of the 
motor. Figure 6 show that the disturbance observer 
designed in this paper can estimate the interference value 
very well. 

In what follows, for the robustness analysis, the 
simulation studies are repeated with different values of the 
initial conditions, disturbances and uncertainties terms. 
The new condition is specified as (0) [ 45 / 57.3,0,0,0]x = − ,

1 2( )= ( )=0.1sin( )d t d t t ,
1 1( , )=0.1cos( ( ))f t x t∆ x ,

2 3( , )=0.5sin( ( ))f t x t∆ x . 
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Figure 2. The response curves of the system state. 

 

Figure 3. The response curves of the sliding surfaces. 

At the same time, ( )5sin t  interference signal is added to the simulation to 5s. Time responses of the system state, the 
sliding surfaces, system phase trajectory and control input signal are displayed in Figures 7-10, respectively. These 
simulation results also confirm that the control scheme has good robustness under different conditions. Therefore, the 
systems can be stably controlled with different values of the initial conditions, disturbances and uncertainties terms, too. 
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Figure 4. The response curves of the system phase trajectory. 

 

Figure 5. The response curves of the control input. 
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Figure 6. The disturbance observation results of the disturbance observer. 

 

Figure 7. The response curves of the system state (with different conditions). 
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Figure 8. The response curves of the sliding surfaces (with different conditions). 

 

Figure 9. The response curves of the system phase trajectory (with different conditions). 
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Figure 10. The response curves of the control input (with different conditions). 

In this paper, the matlab real-time simulation tool and Simulink toolbox are used to test the designed controller on the actual 
vehicle system. Figure 11 shows the linear motor inverted pendulum system manufactured by Hopemotion Co., Ltd. 

 

Figure 11. The practical cart-pole system. 



 Automation, Control and Intelligent Systems 2019; 7(2): 65-78 76 
 

 

Figure 12. The response curves of the pendulum swing angle (physical simulation). 

 

Figure 13. The response curves of the trolley position (physical simulation). 
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Figure 14. The response curves of the control input (physical simulation). 

Figures 12-14 are the experimental curves of the pendulum 
swing angle, trolley position and control input, respectively. 
It can be clearly seen that the swing angle, position and 
control inputs can be quickly maintained stable. The results 
of physical experiments further validate the effectiveness of 
the scheme. 

5. Conclusions 

A second-order hierarchical fast terminal sliding mode 
control scheme based on disturbance observer is proposed for 
a class of fourth-order underactuated mechanical systems. 
Equivalent control terms and switching control terms of 
sliding mode controller are designed by using second-order 
hierarchical fast terminal sliding mode surface and variable 
coefficient double power reaching law. The tracking 
differentiator principle is used to design a hyperbolic tangent 
nonlinear disturbance observer. The uncertainties and 
external disturbances of the system are estimated, and the 
sliding mode controller is compensated to improve the 
robustness of the system. The stability of the system is 
verified by Lyapunov principle. Finally, the effectiveness of 
this method is verified by numerical simulation experiment 
and physical simulation of inverted pendulum. Therefore, the 
application of this method to the control of underactuated 
mechanical systems such as multi-stage inverted pendulum, 
manipulator system, torch system and spherical plate system 
deserves further study. 
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