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Abstract: The guaranteed cost control problem is studied in this paper for a class of nonlinear discrete-time systems with both 

time-varying parametric uncertainty and actuator failures. At present, the researches on related fields of networked control 

systems are relatively mature, and many achievements have been made. But at the same time, most of the researches are focused 

on linear networked control systems, and the research on nonlinear networked control systems is relatively less. The goal is to 

design a non-fragile state feedback control law so that the closed-loop system is asymptotically stable and the closed-loop cost 

function value is no more than a specified upper bound for all admissible uncertainties. Firstly, the system model is established by 

using the method of variable sampling period. Secondly, the sufficient conditions for the asymptotic stability of the closed-loop 

system are given by using Lyapunov stability theory. Thirdly, based on the above researches, a non-fragile state feedback 

controller is designed by using linear matrix inequality (LMI). In the end, through the study of this paper, the cost function of the 

system under the designed non-fragile guaranteed cost controller does not exceed the given upper bound. This paper considers 

the actuator failure, and gives the design method of the non-fragile guaranteed cost controller of the nonlinear network control 

system, and makes a contribution to the field of network control system. 

Keywords: Network Control System, Non-Fragile Control, Actuator Failure, Varying Sampling Period, Nonlinear 

 

1. Introduction 

In the modern society, the Internet is widely used in various 

fields. Many high-tech fields and large enterprises, such as 

resource sharing, automated factories, robots manufactures, 

advanced aerospace undertakings and electrified transport 

vehicle manufacturres, depend heavily on the networks. Since 

the concept of Network Control Systems (NCS) was put 

forward in the early 1990s, it has attracted people's attention 

immediately and posed a new challenge to the traditional 

control theory and application [1]. 

Networked control system is a distributed feedback control 

system. It consists of two parts. On the one hand, sensors, 

controllers and actuators scattered in different geographical 

locations are connected by the network, they form a 

closed-loop control system [2-3], which facilitates the 

connection and data sharing between each component; On the 

other hand, the related control theory is introduced into 

network control to control the network system. 

Compared with the traditional control system, the NCS has 

a tremendous impact on the industrial automation and 

intelligent technology level. Firstly, it has high control 

efficiency, and can display the real-time operation of the 

controlled objects, the statistical processes and results. 

Secondly, precision wise, NCS is more accurate and flexible. 

And the optimal control can be achieved. Finally, the 

participation of the network greatly improves the automation 

degree of the control system and realizes the integration of 

management and control [4-5]. However, due to the 

introduction of the network, many challenges are posing, such 

as time delay and packet loss, bring great difficulties to the 

analysis and design of the network control system [6-7]. 

Therefore, the research on network control system has drawn 

wide attention from scholars both at home and abroad. In 

recent years, many research results have been obtained on 

NCS, such as system modeling and stability analysis, 

robustness and H∞	 control analysis, optimal guaranteed 
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performance control, and controller design problems of 

related systems. 

Zhang Jun did some research on time delay, for a linear 

networked control system with variable delay, the time delay 

is divided into some intervals by interval non-uniformity 

method. Different Lyapunov-Krasovskii functional is 

constructed in each interval, and a triple integral term is 

introduced. Then a new stability condition for the networked 

control system is obtained [8]. Considering the delay and 

uncertainty characteristics of the network control system, 

Yang Xinwei considered the case where the maximum 

allowable network delay and the lower limit are not zero. Then 

he adopted a state feedback controller without predetermined 

parameters and established a closed-loop networked control 

system model with state feedback. In addition, he proposed 

the conditions for robust stability of networked control 

systems [9]. For systems with time delay and packet loss, Wu 

Yongjian considered that input delay included both time delay 

and packet loss. He established a network control system 

model and proved the stability of the network control system 

model based on the feedback data delay, which effectively 

improved the stability of the system. As a result, networked 

control systems with time delay and packet dropout can run 

stably [10]. For the study of data packet loss, Shi Feifei 

established the packet loss as a random Bernoulli sequence 

and used the designed prediction controller to obtain the 

controller corresponding to each delay value. Then, the delay 

compensator selected the corresponding controller to act on 

the controlled object, established a stochastic system model, 

and obtained a compensation controller [11]. Aiming at data 

packet loss, Tian Shuo combined the computational form of 

the function integral inequality, which effectively improved 

the control system. In the system control process, the stability 

and security of the system are fully considered, thus 

improving the control form of the network control system with 

delay packet loss [12]. For uncertain time-delay systems with 

sensor and actuator failures, Zhou Xia models sensor and 

actuator faults as independent Bernoulli distribution 

sequences. The fault-tolerant control of sensor and actuator 

faults is studied, and the design method of stochastic stable 

fault-tolerant controller is given [13]. Pan Peng selected 

random sequences to describe actuator failures in the system. 

An event driven communication channel was established 

between the sensor and the controller, and the system model 

was designed. Stability analysis and controller design were 

also performed [14]. Song Juan studied a class of fault-tolerant 

control problems with NCS communication delays with 

time-varying actuator failures. Time-varying actuator failures 

were modeled as bounded time-varying parameters, and 

fault-tolerant controllers are designed on this basis [15]. In 

previous studies, most studies on nonlinear network control 

systems were based on fixed sampling periods. However, in 

the network control system, factors such as computer load, 

network effect, equipment failure and external interference 

would cause changes in the sampling period of the system. So 

it was necessary to study the time-varying sampling period 

network control system. Considering the sampling period 

uncertainty, Li Yuan modeled it as a discrete system. The 

period uncertainty was transformed into the matrix 

uncertainty by Taylor formula, and the system was 

transformed into a dynamic interval system [16]. Zhao Yan 

used the method of active variable sampling period to model 

the nonlinear continuous network control system with 

multi-packet transmission as a discrete switching system. 

Sufficient conditions for the closed-loop system to be 

asymptotically stable were obtained [17]. Aiming at the 

time-varying sampling period and delay in networked control 

systems, Fan Jinrong transformed the uncertainty of sampling 

period and delay into the uncertainty of system structural 

parameters through matrix Jordan transformation and 

decomposition, and established the discrete-time convex 

polyhedron uncertain system model [18]. 

In networked control systems, since industrial instruments 

and measurement control components are affected by their 

own physical and environmental factors, there are parameter 

disturbances during implementation. Even small disturbances 

may cause instability of the system. Therefore, the effect of 

parameter changes on the system performance must be 

considered in the design of the controller [19]. In recent years, 

the non-fragile problem of controller parameter uncertainty 

has attracted wide attention. Ma Weiguo studied the 

non-fragile guaranteed cost control problem for nonlinear 

systems with quantized and Markov chain losses. The 

networked control system was described as a Markov jumping 

system. Sufficient conditions for the existence of non-fragile 

guaranteed cost controllers for nonlinear systems with 

additive and multiplicative disturbances were given in the 

form of linear matrix inequalities [20]. Aiming at the control 

input constraints and controller gain disturbances, Gao 

Xingquan proposed a non-fragile guaranteed cost state 

feedback control method for a class of norm-bounded 

parameter uncertain linear systems, and derived a new 

sufficient condition for solving the constrained non-fragile 

guaranteed cost control law [21]. Yu Shuiqing studied the 

non-fragile guaranteed cost control problem for a class of 

nonlinear networked control systems with stochastic delay 

and controller gain disturbances [22]. Su Yakun studied the 

guaranteed cost control problem for a class of uncertain 

stochastic systems with interval delays. The purpose was to 

design a non-fragile guaranteed cost control rate and find the 

upper bound of the cost function [23]. 

This paper, designs a non-fragile controller for a class of 

nonlinear networked control systems with variable sampling 

period. In order to solve the problem of actuator failure, this 

paper refers to Li Yu's method. The function not only can 

describe the normal case and outage case but also describe the 

actuator partial degradation [24]. The sufficient conditions for 

the asymptotic stability of the closed-loop system are given by 

using Lyapunov stability theory. Based on the above 

researches, a non-fragile state feedback controller is designed 

by using linear matrix inequality (LMI). In the end, through 

the study of this paper, the cost function of the system under 

the designed non-fragile guaranteed cost controller does not 

exceed the given upper bound. 
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Symbol description: The symbol * indicates the block 

matrix in a symmetric matrix, A� is the transpose matrix of A.  

2. Problem Description 

Consider the following non-linear controlled system: 

�x� 	t� = Ax	t� + Bu	t� + f	t, x�y	t� = Cx	t�            (1) 

Where	x	t� ∈ R�
、u	t� ∈ R� and y	t� ∈ R� represent the 

input state, control input and output state respectively. A, B 

and C are known matrices of appropriate dimensions. f	t, x� 
is an in determinate nonlinear term that satisfies the Lipschitz 

condition: ||f	t, x� − f	t, y�|| ≤ ||G�	x − y�||         (2) 

Where G� is a known constant matrix. 

In this system, it is assumed that the state variable x	t� is 

measurable, and its measurements are first discrete and then 

transmitted in a single package. 0 < d! ≤ d expressed the 

bounded random delay from the sensor to the controller. 

In this article, we use a variable sampling period method. If 

the time delay at sampling time k is d!, then it is assumed that 

the variable sampling period T! at sampling time k is equal to d!. Therefore, to sample system (1) with variable sampling 

period T!, the discretization model is: 

�x	k + 1� = A!	T!�x	k� + B!	T!�u	k� + f	̅T!, x�y	k� = Cx	k�    (3) 

where: 

A!	T!� = e'�(,B!	T!� = ) e'*�(+ Bds 
f	̅T!, x� = ) e'*�(+ f	s, x	s��ds           (4) 

||f	T!, x� − f	T!, y�	|| ≤ ||G	x − y�|| x	k� = x	t!�,y	k� = y	t!�,t! = ∑ T.!./0  

In order to deal the actuator failure, we refer the function 

that is proposed by Li Yu [24]. And it is described as the 

follows. 

For control input u1, i = 1,2…m, let u16	denotes the signal 

from the failed actuator. The following failure model is 

adopted in this paper  u16 = α1u1, i = 1,2…m                (5) 

Where 0 ≤ α89 ≤ α1 ≤ α8: , i = 1,2…m with α89 ≤ 1,α8: ≥ 1. 

Define the α, as follows: 

In the above model of actuator failure, if α8: = α89  , then it 

corresponds to the normal case u16 = u1	; When α8: = 0, it 

covers the outage case. If α8: > 0 it corresponds to the partial 

failure case, i.e., partial degradation of the actuator. 

Denote: u6 = =u06, u>6, … u�6 ?� α: = diagBα0C,α>C,…α�CD 

α9 = diagBα0E,α>E,…α�ED             (6) α = diagBα0, α>, … α�D α	is said to be admissible if α satisfies α9 ≤ α ≤ α:. 

So (3) can be represented by: x	k + 1� = Ax	k� + Bαu	k� + f ̅          (7) 

For system (7) denote a cost function:  J = ∑ =x�	k�Qx	k� + u�	k�α�Rαu	k�?H!/+        (8) 

where Q > 0 and R > 0 are given weighting matrices. 

The purpose of this paper is to design a non-fragile state 

feedback controller: u	k� = 	K + ∆K�x	k�              (9) 

such that the given closed-loop system: x	k + 1� = Ax	k� + Bα	K + ∆K�x	k� + f ̅    (10) 

is asymptotically stable , and cost function satisfies J ≤ J∗, J∗	is a given constant. 

In the state feedback controller (9), K is the nominal 

controller gain and ∆K  is the disturbance of the gain. ∆K = DEF, F�F ≤ I. Where D and E are known matrices of 

appropriate dimensions, F is uncertain parameter matrix. 

Lemma 1 [25]: If Q、H、E and R are real matrices of 

appropriate dimensions, Q and R are symmetrical, R > 0 , 

Then Q + HFE + E�F�H� < 0 holds for all the matrices F 

that satisfy F�F < P. If and only if there exists a constant 

ε > 0 such that Q + ε>HH� + εR>E�RE < 0. 

3. Main Results 

3.1. Stability Analysis 

Theorem 1: For the closed-loop system (7) and the cost 

function (8), the following matrix inequalities holds if there 

exists a matrix K, ∆K, R > 0	and a scalar Γ > 0 

TΦ00 Φ0>
∗ Ρ − Γ0IW < 0             (11) 

where: 

Φ00 = =A + Bα(K + ΔK)?�P=A + Bα(K + ΔK)? + Φ0 

Φ0> = =A + Bα(K + ΔK)?�P                    (12) 

Φ0 = −P + Γ0G�G + Q + (K + ΔK)�α�Rα(K + ΔK) 
then system (7) is asymptotically stable and the cost function 

satisfies: 

J = ∑ =x�(k)Qx(k) + u�(k)α�Rαu(k)?H
!/+ < Z[\]^(_) (13) 

Proof: 

Construct Lyapunov function: 

V(k) = x�(k)Px(k)              (14) 
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Then : ∆V	K� = V	K + 1� − V	K� 	= x�	k + 1�Px	k + 1� − x�	k�Px	k� = ϕ>�Pϕ> − x�	k�Px	k�                 (15) 	≤ ϕ>�Pϕ> − x�	k�Px	k� + Γ0x�	k�G�Gx	k� − Γ0f̅�f ̅
	= bx	k�f̅ c� bϕ00 − ϕd ϕ0>∗ Ρ − Γ0Ic bx	k�f̅ c 

where: ϕ> = =A + Bα	K + ΔK�?x	k� + f ̅ϕd = 	K + ΔK��α�Rα	K + ΔK� + Q     (16) 

Using inequality (11), we get ΔV	k� ≤ −x�	k�ϕdx	k� < 0. 

Due to Q > 0, P > 0 . Using Lyapunov stability theory, so 

system (7) is asymptotically stable. 

Summing both sides of the above inequality from 0 to ∞, we 

can get that: 

V	∞) − V(0) < −∑ x�(k)=Q + (K + ΔK)�α�Rα(K + ΔK)?H
!/+ x(k)                   (17) 

Use the system asymptotically stability and J =
∑ =x�(k)Qx(k) + u�(k)α�Rαu(k)?H
!/+  yield J ≤ V(0) =

x�(0)Px(0). 
The upper bound of the system performance index that 

conclude from theorem 1 depends on the initial state x+, if x+ 

is a zero-mean random variable and satisfies E = (x+x+�) = I, 
then system performance index satisfies: 

EBJD ≤ EBx+�Px+D = Trace(P)          (18) 

Define:  

β = diagBβ0, β>, … β�D,β+ = diagBβ0+, β>+, … β�+D (19) 

where: 

β1 = hiCjhiE
> , β1+ = hiCRhiE

hiCjhiE
	i = 1,2…m        (20) 

α = (I + α+)β, |α+| ≤ β+ ≤ I            (21) 

where 

α = diagBα+0, α+>, … α+�D  , |α+| =
diagB|α+0|, |α+>|, … |α+�|D. 
3.2. Design of Non-Fragile Guaranteed Controller 

On the basis of Theorem 1, the design method of 

non-fragile guaranteed cost controller is given below. 

Theorem 2: For the closed-loop system (7) and the cost 

function (8), if there exists a matrix X, Y > 0 and a scalar 

Γ > 0, ε0, ε>, εd, εm, εn, εo > 0, the following matrix inequality 

holds: 

p
q
q
q
q
q
q
q
q
q
q
q
r−X + (εd + εm)β>Y�Y

∗
∗∗
∗
∗∗
∗∗
∗∗
∗∗
∗

0
−ΓI
∗∗
∗
∗∗
∗∗
∗∗
∗∗
∗

(AX + BβY)�
ΓI
−X∗
∗
∗∗
∗∗
∗∗
∗∗
∗

0
0

BβD + εnβ>D�D
−ε0I
∗
∗∗
∗∗
∗∗
∗∗
∗

ε0XE�
0
0
0

−ε0I
∗∗
∗∗
∗∗
∗∗
∗

 

XG�

0
0
0
0
−ΓI∗
∗∗
∗∗
∗∗
∗

Y�β�
0
0
0
0
0

−RR0

∗∗
∗∗
∗∗
∗

0
0
0
0
0
0

βD + εoβ>D�D
−ε>I∗
∗∗
∗∗
∗

ε>XE�
0
0
0
0
0
0
0

−ε>I
∗∗
∗∗
∗

X
0
0
0
0
0
0
0
0

−QR0
∗
∗∗
∗

0
0
B
0
0
0
0
0
0
0
εdI
∗∗
∗

0
0
0
0
0
0
I
0
0
0
0
εmI∗
∗

0
0
B
0
0
0
0
0
0
0
0
0
εnI
∗

0
0
0
0
0
0
0
I
0
0
0
0
0
εoIs

t
t
t
t
t
t
t
t
t
t
t
t
u

<0                    (22) 

Then u(k) = YXR0x(k) is the guaranteed cost controller of system (7) and the cost function satisfies: 
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J = ∑ =x�	k�Qx	k� + u�	k�α�Rαu	k�?H!/+ ≤ Trace	P�                       (23) 

Proof: 

Matrix inequality(11) can be transformed into: 

bΦ0 00 −Γ0Ic + b=A + Bα	K + ΔK�?�I c P b=A + Bα	K + ΔK�?�I c� < 0              (24) 

Using Schur complement theorem, inequality(24) is equivalent to: 

vΦ0 0 =A + Bα	K + ΔK�?�∗ −ΓR0I I∗ ∗ −PR0 w < 0                            (25) 

It equals to: 

vΦ0 0 	A + BαK��∗ −ΓR0I I∗ ∗ −PR0 w + v 00BαDw F v
E�00 w

� + vE�00 w F� v
00BαDw

� < 0                  (26) 

It follows from the Lemma1 complement that the above inequality is equivalent to: 

vΦ0 0 	A + BαK��∗ −ΓR0I I∗ ∗ −PR0 w + ε0R0 v 00BαDw v
00BαDw

� + vE�00 w v
E�00 w

� < 0	                 (27) 

vΦ0 0 	A + BαK��∗ −ΓR0I I∗ ∗ −PR0 w + v0 0 00 0 00 0 ε0R0BαD	BαD��w < 0	                     (28) 

Using Schur complement theorem, the upper form can be transformed into: 

xΦ0 + ε0E�E∗∗∗
0−ΓR0I∗∗

	A + BαK��I−PR0∗
00BαDε0I y < 0                         (29) 

Reusing Schur complement theorem, inequality (29) is equivalent to: 

pqq
qqq
r−P + Q∗∗∗∗∗∗

0−ΓR0I∗∗∗∗∗

	A + BαK��I−PR0∗∗∗∗

00BαD−ε0I∗∗∗

ε0E�000−ε0I∗∗

G�0000−ΓI∗

	K + ΔK��α�00000−RR0 stt
ttt
u
<0              (30) 

The above mentioned:∆K = DFE, the above inequality can be written as: 

pqq
qqq
r−P + Q∗∗∗∗∗∗

0−ΓR0I∗∗∗∗∗

	A + BαK��I−PR0∗∗∗∗

00BαD−ε0I∗∗∗

ε0E�000−ε0I∗∗

G�0000−ΓI∗

K�α� + 	DFE��α�00000−RR0 stt
ttt
u
<0           (31) 

The above inequality can be written as: 
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pqq
qqq
r−P + Q∗∗∗∗∗∗

0−ΓR0I∗∗∗∗∗

	A + BαK��I−PR0∗∗∗∗

00BαD−ε0I∗∗∗

ε0E�000−ε0I∗∗

G�0000−ΓI∗

K�α�00000−RR0stt
ttt
u
+

pqq
qqq
r 000000αDst

ttt
tu F

pqq
qqq
rE�000000 st

ttt
tu
�

+
pqq
qqq
rE�000000 st

ttt
tu F�

pqq
qqq
r 000000α�D�stt

ttt
u
<0      (32) 

Using Lemma1, (32)is equivalent to: 

pqq
qqq
r−P + Q∗∗∗∗∗∗

0−ΓR0I∗∗∗∗∗

	A + BαK��I−PR0∗∗∗∗

00BαD−ε0I∗∗∗

ε0E�000−ε0I∗∗

G�0000−ΓI∗

K�α�00000−RR0stt
ttt
u
+ε>R0

pqq
qqq
r 000000αDst

ttt
tu

pqq
qqq
r 000000αDst

ttt
tu
�

+ ε>
pqq
qqq
rE�000000 st

ttt
tu

pqq
qqq
rE�000000 st

ttt
tu
�

<0      (33) 

At this point, we use the Schur theorem to get the following inequality: 

 

pqq
qqq
qqq
r−P∗∗∗∗∗∗∗∗∗

0−ΓR0I∗∗∗∗∗∗∗∗

	A + BαK��I−PR0∗∗∗∗∗∗∗

00BαD−ε0I∗∗∗∗∗∗

ε0E�000−ε0I∗∗∗∗∗

G�0000−ΓI∗∗∗∗

K�α�00000−RR0∗∗∗

000000αD−ε>I∗∗

ε>E�0000000−ε>I∗

I00000000−QR0stt
ttt
ttt
u
< 0            (34) 

The left and right sides of (34) are respectively multiplied by the diagonal diagBPR0, ΓI, I, … , ID and let X = PR0, Y = KX , the 

following inequality is obtained. 

 

pqq
qqq
qqq
r−X∗∗∗∗∗∗∗∗∗

0−ΓI∗∗∗∗∗∗∗∗

	A + BαY��ΓI−X∗∗∗∗∗∗∗

00BαD−ε0I∗∗∗∗∗∗

ε0XE�000−ε0I∗∗∗∗∗

XG�0000−ΓI∗∗∗∗

Y�α�00000−RR0∗∗∗

000000αD−ε>I∗∗

ε>XE�0000000−ε>I∗

X00000000−QR0stt
ttt
ttt
u
< 0           (35) 

Take (21) in the inequality,(35) can be written as: 

 

pqq
qqq
qqq
r−X∗∗∗∗∗∗∗∗∗

0−ΓI∗∗∗∗∗∗∗∗

=AX + B	I + α+�βY?�ΓI−X∗∗∗∗∗∗∗

00B	I + α+�βD−ε0I∗∗∗∗∗∗

ε0XE�000−ε0I∗∗∗∗∗

XG�0000−ΓI∗∗∗∗

Y�=	I + α+�β?�00000−RR0∗∗∗

000000	I + α+�βD−ε>I∗∗

ε>XE�0000000−ε>I∗

X00000000−QR0stt
ttt
ttt
u
< 0  (36) 

It equals to: 
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pqq
qqq
qqq
r−X∗∗∗∗∗∗∗∗∗

0−ΓI∗∗∗∗∗∗∗∗

	AX + BβY��ΓI−X∗∗∗∗∗∗∗

00BβD−ε0I∗∗∗∗∗∗

ε0XE�000−ε0I∗∗∗∗∗

XG�0000−ΓI∗∗∗∗

Y�β�00000−RR0∗∗∗

000000βD−ε>I∗∗

ε>XE�0000000−ε>I∗

X00000000−QR0stt
ttt
ttt
u
+
pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu
α+

pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u�

+
pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u
α+�

pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu
�

+ 

 

pqq
qqq
qqq
r000000I000st
ttt
ttt
tu
α+

pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u�

+
pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u
α+�

pqq
qqq
qqq
r00B000I000st
ttt
ttt
tu
�

+
pqq
qqq
qqq
r 000βD�000000 stt

ttt
ttt
u
α+�

pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu
�

+
pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu
α+

pqq
qqq
qqq
r 000βD�000000 stt

ttt
ttt
u�

+

pqq
qqq
qqq
r 0000000βD�00 stt

ttt
ttt
u
α+�

pqq
qqq
qqq
r000000I000st
ttt
ttt
tu
�

+
pqq
qqq
qqq
r00B000I000st
ttt
ttt
tu
α+

pqq
qqq
qqq
r 0000000βD�00 stt

ttt
ttt
u�

< 0   (37) 

Using Lemma1, the above inequality can be written as : 

pqq
qqq
qqq
r−X∗∗∗∗∗∗∗∗∗

0−ΓI∗∗∗∗∗∗∗∗

	AX + BβY��ΓI−X∗∗∗∗∗∗∗

00BβD−ε0I∗∗∗∗∗∗

ε0XE�000−ε0I∗∗∗∗∗

XG�0000−ΓI∗∗∗∗

Y�β�00000−RR0∗∗∗

000000βD−ε>I∗∗

ε>XE�0000000−ε>I∗

X00000000−QR0stt
ttt
ttt
u
+ εdR0

pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu

pqq
qqq
qqq
r00B0000000st
ttt
ttt
tu
�

+ εd
pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u

pqq
qqq
qqq
rβY�000000000 stt

ttt
ttt
u�

+ 

 εmR0
pqq
qqq
qqq
r000000I000st
ttt
ttt
tu
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< 0    (38) 

For the formula (38), we use the Schur theorem to get the following inequality (39): 

pq
qqq
qqq
qqq
qr−X + 	εd + εm�β>Y�Y∗∗∗∗∗∗∗∗∗∗∗∗∗

0−ΓI∗∗∗∗∗∗∗∗∗∗∗∗

	AX + BβY��ΓI−X∗∗∗∗∗∗∗∗∗∗∗

00BβD + εnβ>D�D−ε0I∗∗∗∗∗∗∗∗∗∗

ε0XE�000−ε0I∗∗∗∗∗∗∗∗∗
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XG�0000−ΓI∗∗∗∗∗∗∗∗

Y�β�00000−RR0∗∗∗∗∗∗∗

000000βD + εoβ>D�D−ε>I∗∗∗∗∗∗

ε>XE�0000000−ε>I∗∗∗∗∗

X00000000−QR0∗∗∗∗

00B0000000εdI∗∗∗

000000I0000εmI∗∗

00B000000000εnI∗

0000000I00000εoIst
ttt
ttt
ttt
tt
u

<0                 (39) 

The proof is completed. 

4. Conclusion 

In work process of the actual network control system, there 

will inevitably be some fault conditions, such as controlled 

system failure, actuator failure, sensor failure and so on. 

Among them, actuator failure is the main cause of system 

control performance failure. Therefore, the fault-tolerant 

research in this paper is mainly for the case of actuator failure. 

This paper studies non-fragile guaranteed cost control of a 

nonlinear networked control system with variable sampling 

period and actuator failure. In this paper, a system fault model 

with parameter α  is established by digitizing the actuator 

fault. The actuator fault is described as a fault matrix within a 

bounded continuous number interval. Based on this 

assumption, the Lyapunov function of the controlled system is 

designed, and the sufficient conditions for the asymptotic 

stability of the system are obtained by using Lyapunov 

stability theorem. The design method of the system's 

non-fragile guaranteed cost controller is given by linear matrix 

inequality technique. Through the research of this paper, it is 

concluded that the system can run stably under the condition 

of the actuator failure in the actual working process. At the 

same time, the condition that the system meets the guaranteed 

cost state is given. And the method of designing non-fragile 

controllers for maintaining guaranteed performance with the 

system is also given. 
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