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Abstract: In this paper, based on MacLaurin’s series and the Riccati equation, an algebraic quadratic equation will be 

developed and hence, its two roots, which represent the minimizing and maximizing optimal control matrices, would be 

deducted easier. Otherwise, a step-by-step algorithm to compute the control matrix for every step of time according to the 

preceding responses and a new signal pick will be explained. The proposed method presents a new discrete-time solution for 

the problem of optimal control in the linear or nonlinear cases of systems subjected to arbitrary signals. As an example, a 

system (structure) of three degrees of freedom, subjected to a strong earthquake is analyzed. The displacements versus time 

and the stiffness forces versus displacements of the system, for the two uncontrolled and controlled cases are graphically 

shown. Therefore, the curves of variations of the elements of the optimal control matrix versus discrete-time are also presented 

and clearly show the effect of the nonlinearity, of the system, which is the cause of the great responses in the uncontrolled case, 

and that it is optimally treated by the proposed solution. The results obtained clarify a great reduction of the controlled system 

results, in comparison with the uncontrolled system ones. The percentage of the differences between the controlled and 

uncontrolled results (displacements or stiffness forces) could even surpass 90	%, which demonstrates that the adopted solution 

is good even than that of the original ones of the differential or the algebraic Riccati equation. 

Keywords: Optimal Control, Modified Riccati Equation, Quasi-Theoretical Solution, Discrete-Time Algorithm,  

Nonlinear Systems 

 

1. Introduction 

It is well known that the QR is a widely used method for 

the optimal control of systems in engineering analysis and 

design practices. The method indeed, is based on the 

determination of the optimal control matrix, which is 

practically and optimally reduce the effect of the signals for 

which the systems are subjected. Moreover, the interest to 

resolve the Riccati matrix equation is appear clarify in the 

literature since decades, and several simple or complex 

algorithms are proposed [1-15 and17-23], an iterative 

algorithm [18], a numerical algorithm using the iterative 

Newton-Raphson method [1], an algorithm and a software 

using the Eigen-solution [6], an iterative algorithm using the 

iterative Newton method [8] and a step-by-step algorithm for 

the resolution of the differential Riccati equation [12], 

present some from which is published in this domain.  

Otherwise, based on the matrix algebraic equation of 

Riccati and the MacLaurin’s series, a quadratic algebraic 

equation will be developed, such that its two roots which 

represent the closed-loop minimize and maximize optimal 

control matrices will be deducted easily. The deducted 

control matrices are computed for every so small step of time 

and for a given system proper matrices (deducted from the 

previously step of time). Therefore, the step-by-step 

algorithm proposed, means that the system behaves linearly 

during every step of time; but changing its properties from 

step to step in terms of the responses computed previously, so 

actually the proposed algorithm could be considered as a 

nonlinear algorithm and resolve nonlinear problems, such 

that the results of this method stretching well to the exact 

solution as-well-as the time step taken should be refined as 

possible.  

As testing numerical example, to demonstrate the 

efficiency of the proposed method, a nonlinear structure of 

three degrees of freedom, subjected to El-Centro earthquake 

was analyzed, in the two uncontrolled case and controlled 

one using the proposed method. The curves of the responses 
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and the acted stiffness forces on every degree of freedom 

show the great reductions of the results in the case of the 

controlled structure, compared with the others of the same 

uncontrolled one. Moreover, the variations of the optimal 

control matrix elements versus time are also shown. 

Firstly, we start in the second section to transform the 

classical Riccati algebraic equation to a quadratic one, and 

therefore, we deduct in the third section, the two quasi-

theoretical minimize and maximize optimal control matrices 

and force vector. The fourth section is appearing in the 

numerical example to present the results which could the 

proposed method offers. The following sections dealing with 

the explanation of results and the conclusion. 

2. The Transformation of the Riccati 

Equation 

The state space formulation of a controlled dynamic 

system is stated by the ordinary differential equation ����	 = ���	���	 + 
����	 + 
����	           (1) 

Where, ����	 is the controlled force vector deducted after 

computing the optimal control matrix, ����	, ���	, ���	, 
 are 

respectively, the seismic force vector, the state space 

response vector, and the state space matrices, given by 

����	 = −����       ���	 = ����	�� ��	� 
���	 = � 0 �−������	 −������	       
 = ! 0���" 

�  represents the unity matrix, �  a unity vector and ��  the 

ground acceleration. 

Suppose that the optimal control matrix #��	$%×$%  (such 

that '  represents the number of the structure’s degrees of 

freedom), is related by #��	 = (��	�����	                             (2) 

By differentiating the Hamiltonian function we conclude 

the vector relations 

)(���	 = −�*��	(��	 − +��	���																						����	 = −
,��
*(��	 + ���	���																����	 = −,��
*(��	 = −,��
*#��	���	 -    (3) 

Expressions, such that ,%×%  and +$%×$%  represent the 

weighting matrices. 

The first equation of the expressions (3) can be rewritten, 

after replacing (��	 by its expression (2), and differentiating 

according to � 

#� ��	���	 + #��	����	 = −�*��	#��	���	 − +��	���	    (4) 

Replacing ����	 by its relation (3) and simplifying by ���	, 

we can getting then #� ��	 − #��	
,��
*#��	 + #��	���	 = −�*��	#��	 − +��	  (5) 

Therefore, the differential matrix equation of Riccati, 

could be concluded as following #� ��	 = #��	
,��
*#��	 − #��	���	 − �*��	#��	 − +��	  (6) 

Assuming that #� ��	 = .�#	 = 0, hence we could write .�#	 = #
,��
*# − #� − �*# − +                (7) 

According to MacLaurin’s series, the equation (7) would 

be developed as follows .�#	 = .�0	 + .,/�0	# + .,//�0	 #$ 2⁄              (8) 

).�0	 = 0
,��
*0 − 0� − �*0 − + = −+																												.,/�0	 = 
,��
*0 + 0
,��
* − �� + �*	 = −�� + �*	.,//�0	 = 2
,��
*																																																																								-  (9) 

Replacing .�0	, .,/�0	 and .,//�0	 by their values (9), we 

get hence #� ��	 = 
,��
*#$��	 − 2���	 + �*��	3#��	 − +��	  (10) 

The solution of the differential equation (10) couldn’t 

indeed extends a minimize solution, because is appearing as a 

mixed solution, and to separate between the minimize and 

maximize solutions we suppose that #� ��	 = 0. Therefore, the 

following algebraic equation will be deducted 
,��
*#$ − �� + �*	# − + = 0                (11) 

This equation represents a transformation of the matrix 

algebraic equation of Riccati. Therefore, the two roots of this 

equation represent clearly and optimally the minimizing and 

maximizing solutions. These roots of this equation could then 

be deducted easier as it is will be demonstrated in the 

following section for every step of time and in terms of the 

proper matrices of the system, computed by the step which 

precedes. 

3. The Optimal Control Matrices and 

Force Vector 

The two matrix roots of the above equation (11), are given 

by the following expressions, which are represent the 

minimize and maximize optimal control matrices 

respectively 

4#���	 = 52
,��
*6�� �2���	 + �*��	3 − 72���	 + �*��	3$ + 4
,��
*+��	9� $⁄  
#$��	 = 52
,��
*6�� �2���	 + �*��	3 + 72���	 + �*��	3$ + 4
,��
*+��	9� $⁄  -                          (12) 

Otherwise, the matrix 
,��
*  couldn’t have an inverse 

such that it has the form 
,��
* = 70 00 ���,�����9                 (13) 
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Therefore, we should to proceed approximately. The 

proposed approximation procedure can be stated as follows 

The square matrix �
,��
* + �	$ could be developed by 

the relation �
,��
* + �	$ = �
,��
*	$ + 2
,��
*� + �$ 

Multiplying lefty the two sides of this equation by the term �
,��
*	��, we get �
,��
*	���
,��
* + �	$ = 
,��
* + 2� + �
,��
*	���$ 

After simplification, this equation becomes �
,��
*	��5�
,��
* + �	$ − �$6 = 
,��
* + 2� 

The matrix 5�
,��
* + �	$ − �$6  has the same form as 
,��
* , and couldn’t also have an inverse. Approximately, 

we propose to take the term :� instead of �$, such that the 

coefficient : is a, as possible, stretching to the unity but not 

equals the strictly unity. According to the precision of the 

computer and/or the programming language used, we can 

take :  precise as possible. For example we can take : =0.9999999999999999. Then we can get approximately �
,��
*	�� = 5
,��
* + 2�65�
,��
* + �	$ − :�6��  (14) 

Replacing �
,��
*	�� by its expression (14) in the two 

matrix roots (12), the minimize and maximize optimal 

control matrices which should to be computed for every step 

of time are then becomes 

<==
>=
=? #��	 = 0.55
,��
* + 2�65�
,��
* + �	$ − :�6��									�2���	 + �*��	3 − 72���	 + �*��	3$ + 4
,��
*+��	9� $⁄  #��	 = 0.55
,��
* + 2�65�
,��
* + �	$ − :�6��																	�2���	 + �*��	3 + 72���	 + �*��	3$ + 4
,��
*+��	9� $⁄  

-  (15) 

The matrix 72���	 + �*��	3$ + 4
,��
*+��	9� $⁄
can be 

computed using the iterative method [16], supposing that 

A$ − 72���	 + �*��	3$ + 4
,��
*+��	9 = 0 

Such that A is the matrix square root needed. 

The optimal control matrix is computed in terms the 

system proper matrices computed from the preceding step, 

such that they are in turns following the system nonlinearity 

laws in function of the responses computed. The optimal 

control forces acted to every degree of freedom of the system, 

for any step of time, are ranked in the vector of the third 

equation (3) in terms of the last step responses. 

Therefore, the proposed method is summarized, for every 

step of time, in the following steps: 

1. Computing the proper matrices of the system, 

according to the previously results (responses) 

2. Computing, according the case, the minimize or the 

maximize optimal control matrix 

3. Deducting the optimal control force vector and 

adding it to the new exterior force vector 

4. Resolving the ordinary differential state space 

equation of the system to get the responses of this 

step of time 

5. According to the results found from the step (4.), 

starting a new loop with a new step of time 

4. Numerical Example 

The chosen numerical example, for the evaluation of the 

efficiency of the proposed method to reduce optimally the 

results of the systems subjected to arbitrary signals, is 

imitated in a structure of three degrees of freedom with 

concentrates masses at the level of every degree of freedom, 

and subjected to the Modified El-Centro Earthquake. The 

stiffness behavior of the material, which the structural 

elements has been fabricated, is assumed to be following a 

bilinear model, for which it consists of two branches, an 

elastic branch with the stiffness equals B�  and a plastic 

branch such that the stiffness equals BC. The mass, stiffness 

and damping matrices for the chosen structure are given by 

� = DE 0 00 E 00 0 EF   � = D B� −B� 0−B� B� + B$ −B$0 −B$ B$ + BGF 

� = H� + I� E = 1	BK and B�	LM	$	LM	G can take the values: B� = 25	N/E 

(for the elastic linear branch) and BC = B�/3 (for the plastic 

branch), H and I represent the Rayleigh damping coefficients 

which are given in terms of the frequencies of the linear 

elastic structure Q�  and Q$  and the damping coefficient R . 

Assuming that the damping coefficient R = 0.05, then I = 0.1 �Q$ − Q�	 �Q$$ − Q�$	 =⁄ 0.006559 

 H = Q�Q$I = 0.368488 

The elastic limit displacement, with which the material 

stiffness transferring from the elastic to the plastic branch, is 

chosen to be equals 0.025	E, this limit indeed, that deciding 

if the proper structural stiffness and damping matrices 

changing or no from any step of to another. The ground 

acceleration variations are shown in Figure 1, such that the 

step of time separates two peaks is 0.02	U . The weighting 

matrices are chosen to be giving by 

, = D0.1 0 00 0.1 00 0 0.1F     + = �0 00 −�,������	$ V×V 

The displacements curves of the three floors (degrees of 

liberty), for the two uncontrolled and controlled cases, versus 

time are shown by the Figure 2, 3 and 4. The hystereses of 

the stiffness forces acted on the three degrees of freedom 

versus the displacements variations are clarified by the three 

figures 5, 6 and 7. To show the effect of the nonlinearity 

behavior of the system, some of the optimal control matrix 

elements variations versus time are be clearing in figures 8, 9, 

10 and 11. 
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Figure 1. The acceleration of the ground (E U$⁄ ) 
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Figure 2. The first floor displacement vs. time 
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Figure 3. The second floor displacement vs. time 
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Figure 4. The third floor displacement vs. time 
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Figure 5. The first floor stiffness force vs. Displacement 
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Figure 6. the second floor stiffness force vs. displacement 
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Figure 7. The third floor stiffness force vs. displacement 
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Figure 8. The P66, P65 and P52 elements of the optimal control matrix 
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Figure 9. The P55, P62 and P45 elements of the optimal control matrix 
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Figure 10. The P42, P44 and P41 elements of the optimal control matrix 
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Figure 11. The P61 and P64 elements of the optimal control matrix 

5. Results and Discussion 

By perceiving of the figures 2, 3 and 4 and Table1, we can 

remark the grand differences between the displacements of 

the three floors of the analyzed structure. Despite that the 

analyzed structure is subjected to a so strong earthquake, and 

the uncontrolled responses are so considerable (40 to 80	WE), 

we can see that the controlled responses are so moderate (3 

to 13	WE ) despite the fact that the elastic displacement 

adopted is so small too (2.5	WE), and the percentage of the 

differences of the three degrees of freedom displacements has 

being about 71	%, 85	% and 97	% from the first to the third 

degree of freedom respectively. The differences between the 

stiffness forces, for the uncontrolled and controlled cases, are 

also considerable, such that we can observe, by the 

examination of the figures 5, 6, 7 and Table 2, that the 

stiffness forces for the uncontrolled case are fluctuate 

between 4	N and 7.2	N, while these forces for the controlled 

case, alternate between 0.6	N  and 1.5	N , and such that the 

percentage of the differences are ranged between 62	% and 

92	% for the first and the third degree of freedom. 

Table 1. The maximal Uncontrolled, Controlled displacements and their 

fraction 

Floors 
Uncontrolled max. 

displacements 

Controlled max. 

displacements 

% 

Cont./Uncont. 

1 0.426 0.124 29.11 

2 0.816 0.121 14.83 

3 0.763 0.024 3.15 

Table 2. The maximal Uncontrolled, Controlled forces and their fraction 

Floors 
Uncontrolled max. 

forces 

Controlled max. 

forces 

% 

Cont./Uncont. 

1 3.968 1.493 37.63 

2 7.218 1.418 19.65 

3 6.774 0.566 8.36 

6. Conclusion 

The proposed method could be summarized in determining 

firstly, the minimize and maximize optimal control matrices 

(according the case) which are the matrices roots of the 

quadratic equation developed herein and secondly, to 

compute the roots by a discrete-time algorithm which aimed 

to evaluate the optimal control matrix for every step of time 

according to the nonlinear behavior of the analyzed system 

which in turn (the behavior of the system), is a function of 

the previously responses (the displacements and velocities in 

the case of structural engineering). This proposed method of 

the optimal control of systems subjected to arbitrary signals 

indeed, possesses the ability to offer a good control and a so 

sufficiently results. Furthermore, the method allows the 

analysis of nonlinear systems (i.e. real systems), because it is 

resolved for every step of time and according to the state of 

the system. The figures 8-11, clearing show the effect of the 

nonlinearity of the structure adopted as an example, on the 

variations of the optimal control matrix.  

The results (displacements and stiffness forces curves) of 

the proposed example show the efficiency of the getting 

solution. As it is seen by the figures and tables, the controlled 

results are very considerably reduced, which can surpass 90	% of percentage of the differences between uncontrolled 

and controlled displacements and acted stiffness forces. In 

spite that the ground motion acceleration are very high, and 

this effect is shown by the uncontrolled structure responses; 

but the controlled results are too moderate and sufficiency, 

and for the third floor, the element was not plasticized even 

as shown by Figure 7, despite that the limit elastic 

displacement adopted is very small. 

These excellent controlled results indeed, demonstrate the 

effect of the optimal control of structures using the Quadratic 

Regulator method, and the obtained solution of the optimal 

control matrix formulated and the effect of the nonlinear 

behavior of the system adopted. 
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