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Abstract: The paper presents unity between control systems and classical dynamics. A state observer is constructed based on 

uniformly accelerated motion. It is known F = ma in Newtonian motion equation is considered as a control input force which 

functions on the controlled plant process. The designed control system is of good robust performance. 
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1. Introduction 

Design control systems in modern control theory always 

needs a mathematics model of controlled plant , however the 

model is not exactly obtained and the model is uncertain in 

general, these limits led to the poor control system 

performance. 

The paper designs a control system based on Classical 

dynamics without exact plant model, and the systems are of 

good robust performances. 

2. State Observer Based on Uniformly 

Accelerated Motion 

When a motion (/response) velocity of controlled plant 

process (/ body) is greatly less than velocity of light, we can 

describe its motion using uniformly acceleration motion: 

2
0 0 0.5S S V t at= + +  

0

.

S V V a t= = +              (1) 

.. .

S V a= =  

where , ,S V a  are respectively the position, velocity and  

acceleration of the body/process motion. 

Assume a controlled second system with the random 

disturbance ( )v t : 

( , , ( ))y f y y v t bu= +ɺɺ ɺ                     (2) 

the system in state space is: 

21

.
y y=  

1 22

.
( , , ( ))y f y y v t bu= +                  (3) 

1y y=  

For a controlled plant process, assuming )1(z , )(,),2( kzz ⋯ , 

the k  measurement output data are obtained from the 

controlled plant output ( )y k  , sample(/control) period is st , 

the measurement equation is 

)()()( kvkykz += ,                   (4) 

where: 

2

2[ ( )]

[ ( )] 0

E k r

E v k

v =

=
 

)(kv  is white noise, we can estimate the controlled plant 

output ( )y k  using Exp. (1) based on )1(z , )(,),2( kzz ⋯ , 

when st  is very short, 

2ˆ ˆ ˆ ˆ( ) ( 1) ( 1) 0.5 ( 1)
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ˆ ˆ( ) ( 1)

s s

s

y k y k t y k t y k

y k y k t y k

y k y k

= − + − + −

= − + −

= −

ɺ ɺɺ

ɺ ɺ ɺɺ

ɺɺ ɺɺ

               (5) 

where )(ˆ ky , ˆ( )y kɺ  and ˆ( )y kɺɺ  are respectively the estimated 

values of ( )y k , 
.

( )y k  and 
..

( )y k  at time k . 
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Exp. (5) can be written as: 

^ ^

( ) ( 1)Y k Y kφ= −                         (7) 

To improve estimate accuracy, the compensating for 

random disturbance is into acceleration estimate ˆ( )y kɺɺ : 

ˆ ˆ( )  ( 1)  ( 1)y k y k w k= − + −ɺɺ ɺɺ               (8) 

where： 0)]([ =kwE , 1
2

)]([ rkwE =  

Exp.(7) becomes: 

^ ^

( ) ( 1) ( 1)Y Yk k w kφ= − + Γ −                  (9) 

where： [ ]T100=Γ  

measurement equation (4) is written as: 

^

( ) ( ) ( )z k cY k v k= + ,                   (10) 

where: ]001[=c  

Kalman filter theory can be used for  state equation (9) and 

measurement equation(10), φ  and Γ  are constant matrixes, 

meet ( , )rank nφ Γ = , ( , )rank c nφ = , so the system is 

completely controllable and observable in Kalman filter 

theory( the proof is given the following lemma), when st  is 

very short and filtering time is very long, the covariance 

matrix, 

lim ( )
k

P k P
→∞

= , 

gain matrix 

( )
k
Lim K k K

→∞
= , 

( ) [ , , ]TK k K α β γ→ = . 

We have the following time discrete observer to an 

unknown controlled plant: 
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s
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     (11) 

F ma=  in the classical dynamics. Referencing Exp.(3), 

the control input u  is considered as a force  which functions 

on the controlled plant, u F= , and a uθ=  , where F  is the 

force and a  is the acceleration. 

As ˆ ˆ ˆ( ) ( ( ) ( 1)) / sy k y k y k t= − −ɺɺ ɺ ɺ  is an estimate to the 

acceleration of the system, 

ˆ ˆ ˆ( ) ( ( ) ( 1)) / ( 1)sy k y k y k t u kθ= − − = −ɺɺ ɺ ɺ  

so, ˆ ˆ( ) ( 1) ( 1)sy k y k t u kθ= − + −ɺ ɺ  

Relate Exp.(11), 

ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ( 1) ( 1))s sy k y k t y k t z k y kβ= − + − + − − −ɺ ɺ ɺɺ , we 

have 

ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ( 1) ( 1)) ( 1)s s sy k y k t y k t z k y k t u kβ θ= − + − + − − − + −ɺ ɺ ɺɺ  

Exp.(11）becomes: 
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  (12) 

Exp.(12) is a time discrete observer with control input u  

for the control system (3) 

Using the transformation 

2 2
0.5I At A t φ+ + =  

We have the following time continuous observer of an 

unknown controlled plant 

1 2

2 3

3
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              (13) 

where 1
ˆ ˆy y= ; 2

ˆ ˆy y= ɺ ; 3
ˆ ˆy y= ɺɺ , st  is sample(/control) 

period, u is control input to the plant system, ,l hθ≤ ≤ . l  

and h  are real boundary numbers. 

Exp.（13）is the time continuous observer of an unknown 

controlled plant with control input u for the control system 

(3), Exp.（13）is simply called OCICD(Observer with Control 

Input based on Classical Dynamics). 

Lemma. Discrete systems (9) and (10) are completely 

controllable and observable. 

Proof. The state matrix φ  is time-invariant, as st  is 

determined in systems (9), we calculate 

2 2

2
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s s

t t
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s s

s s

c c c c t t

t t

φ φ φ
 
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  

 

( , ) 3rank φ Γ = , ( , ) 3rank cφ = ; so discrete systems (9) and 

(10) are completely controllable and observable. 

Theorem 1. Time continuous observer system (13) is 

consistent asymptotic stable. 

Proof. We have proved discrete systems (9) and (10) are 

completely controllable and observable, time discrete 

observer (12) is obtained by Kalman filter, so time discrete 

observer（12）is consistent asymptotic stable when ,α β  and 

γ  are rightly selected. Time continuous observer (13) is 
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obtained by transforming time discrete observer (12), so time 

continuous observer (13) is also consistent asymptotic stable, 

when ,α β  and γ  are rightly selected. From characteristic 

equation γβα +++=− sssAsI
23

 of time continuous 

observer (13), if  

0>α , 0>β , 0>γ  and γαβ > ,       (14) 

then time continuous observer system (13) is consistent 

asymptotic stable, based on Routh and Hurwitz's stability 

criterion. 

We set 

2 3
1 / , 0.5 / , 0.088 /

s s s
t t tα β γ= = =        (15) 

in time continuous observer system (13) based on Exp. (14) 

and our experience. 

Exp. (15) is only related to a sample (/control) period 
s

t , 

and independents from a controlled plant. 

Theorem 2. 3ŷ  in time continuous observer system (13) is 

unbiased estimate value to 1 2
( , , ( ))f x x v t in a second order 

state space model (3) : 

Proof. It is known, Kalman filter is an unbiased estimator, 

time discrete observer (12) and time continuous observer 

system (13) are the special applications of Kalman filter, and 

second system (3) is completely controllable and observable, 

so time discrete observer (12) and time continuous observer 

system (13) are unbiased estimators to system (3). 

Let 

3 1 2( , , ( ))x f x x v t=            (16) 

System (3) is written as: 

1 2

2 3

3 1 2

1

( , , ( ))

x x

x x bu

x f x x v t

y x
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 = +

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ɺ

ɺ

ɺɺ
                 (17) 

Comparing Exp. (17) with Exp. (13): 
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3
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Because time continuous observer system (13) is unbiased 

estimator to system (3), we have: 

1 1
ˆ ,y x y→ =  2 2ŷ x→ , 3 3 1 2

ˆ ( , , ( ))y x f x x v t→ =    (18) 

We have proven 3ŷ  in time continuous observer system 

(13) is unbiased estimate value to 1 2
( , , ( ))f x x v t in a second 

system (16). 

We have the following observer system for a controlled 

plant process with acceleration 0a = : 

1 2
ˆ ˆ ˆ( )y y z y uα θ= + − +ɺ ;  

2
ˆ ˆ( )y z yβ= −ɺ      (19) 

1
ˆ ˆy y=  

where 
2

1 / , 0.5 /
s s

t tα β= =  

We have the following observer system for a controlled 

plant process with varying acceleration a   

1 1

2 2

33

4
4

ˆ ˆ1 0 0 0

ˆ ˆ0 1 0 0

ˆ0 0 1ˆ

ˆ0 0 0 0ˆ

y y

y y z

y uy

yy

α α
β β
γ γ λ
θ θ

  −     
      −       = +       −        
  −     

ɺ

ɺ

ɺ

ɺ

        (20) 

1
ˆ ˆy y=  

where 
2

1 / , 0.5 /
s s

t tα β= = 30.088 / stγ = ,
40.01/

s
tθ = . 

3. Control System Design with OCICD 

and Removing Uncertain 
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Fig 1. COCD (Controller with Observer based on Classical dynamics). 

 

A controller and control system with OCICD are 

respectively designed shown in Fig.1 and Fig.3. The position, 

velocity and acceleration of control system output are negative 

feedback function in system. The controlled plant is a second 

order state space model (3), the second order system is of 

general model in process control system.  

The controller of Fig.1 is called as COCD (Controller with 

Observer based on Classical dynamics), it consists of setting 

desire system output locus, OCICD and controller output. 

The control system of Fig.3 is called as CSCOCD (Control 

System with COCD).  

3.1. Setting Desire System Output Locus 

The desire system output y  is designed in COCD, 

2/ ( 1) ( ) ;ry R as bs G s R= + + =  

2( ) 1/ /( 1)rG s as bs= + +                  (21) 

where R is the amplitude of step input, 

21/ , 2 /n na w b wς= = ;                 (22) 

nw  is the undamped natural frequency, ς  is the damping 

coefficient. 

The desire transient process time T  is defined as the time in 

which y  approaches to 0.98* R  for the closed loop system, 

and T is related to Exp. (22) , (23) and (24). 

1ς = , 7 /
n

w T= ,                    (23) 

then the desire system is determined, it is configured in state 

space model shown in Fig,2, 1 2
1/ , /f a f b a= =  in Fig,2. 

 

Fig 2. Desire system. 

3.2. Determining Parameters of OCICD 

The sample s
t  is determined by the sample theory and our 

experience: 

/ ,st T n=  [1000n∈  2000]          (24) 

where T is the desire transient process time,  the ,α β  and 
γ  are calculated by Exp. (15). 

 

Fig 3. CSCOCD(Control system with COCD ). 

3.3. Controller Output 

If the value b in controlled plant state space model (17) is 

known, let  

0 1 2( ( , , ( ))) /u u f x x v t b= −                  (25) 

then controlled plant state space model (16) is changed to 

1 2

2 0

1

x x

x u

y x

=
 =
 =

ɺ

ɺ  

A suitable 0u  is selected, the transform function ( )
a

G s

between y and 0u  
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( ) [1,0]
a

G s =  

1

2
0 0 1 0

1/
0 0 0 1

s
s

s

−
      

− =      
      

, 

If 1 2
( , , ( ))f x x v t  in controlled plant state space model (3) 

is uncertain, then the uncertain 1 2( , , ( ))f x x v t  including 

unknown disturbance ( )v t  are completely removed. We have 

proven that 3ŷ  in time continuous observer system (13) is 

unbiased estimate value to 1 2( , , ( ))f x x v t  in Theorem 2, so we 

select 3 1/K b= , and  

1 1 2 2 3 3 0 3
ˆ ˆ ˆ ˆ( ) ( ) /u K r y K r y K y u y b= − + − − = −ɺ     (26) 

where 0 1 1 2 2
ˆ ˆ( ) ( )u K r y K r y= − + −ɺ . 

If controlled plant space model (16) is known, then  

bθ = , 3 1/ ,K θ=                      (27) 

and 1K  and 2
K  can be obtained by the solution of optimal 

linear-quadratic Gaussian algorithm(LQG) for the controlled 

plant space model (3). 

If the plant state space model (17) is unknown, assuming  

,l b h≤ ≤                        (28) 

we set firstly:  

( ) / 2l hθ = + , 3
1/K θ= , 1

[1K ∈  1.5],  2
[0.5K ∈  2]   (29) 

then we can determine 1 2, 3
, ,K K Kθ by several times tests based 

on the golden section. 

It is important to determine desire transient process time T  

without the mathematics model of controlled plant . Control 

engineers must estimate the motion (/response) velocity and 

completing time of controlled plant process based on analysis 

and understanding for a controlled plant process, just as the 

time program to plan a trip, we must estimate velocity and 

completing time of a vehicle. 

 

Fig 4. Inspecting the OCICD efficiency. 

4. Simulation and Application Examples 

with COCD 

4.1. Simulation Example 

Fig.4 is simulated with Matlab to inspect the OCICD 

efficiency. The second system transfer function
2G ( ) 1/ (0.21 0.37 1)p s s s= + +  is configured as Fig.2, where

1 24.76, 1.76,R=1,f f= = . T=1(sec),t 0.001, 1000,
s

α= =  

 500000, 88000000β γ= =  in OCICD.  

The simulated curves of OCICD outputs and the second 

system outputs are shown in Fig.5, the OCICD outputs are 

very close to the second system outputs, Fig.5 confirms 

OCICD (13) which is an unbiased estimator to a system. 

 

Fig 5. Comparing outputs of OCICD and the second system. 

4.2. Application Example 

CSCOCD of Fig.3 is used to control the time-varying 

controlled plant with the transfer function 
2

1
G ( ) 0.8 / (0.21 0.37 1)

p
s s s= + +  and 

2

2
G ( ) 1.3 / (0.06 0.17 1)

p
s s s= + +  

in some steel factory. The same parameters are selected for the 

time-varying controlled plants 1G ( )p s and 2G ( )p s : 

T=1(sec),t 0.001, 1000,s α= =  500000, 88000000β γ= =  

in OCICD;  R=1,  1 2
45,f 13.5f = =  in the desire system of  

Fig.2; 1 2 3
1, 1.5, 0.007,K K K= = =  145θ = . 
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Fig 6. Outputs of the closed loop system of 1
G ( )

p
s  and 2

G ( )
p

s . 

The closed loop system outputs of 1
G ( )

p
s and 2

G ( )
p

s with 

the same control parameters are shown in Fig.6, and Fig.6. 

confirms good robust performance of CSCOCD. 

5. Conclusion 

(1) The paper designs the control system based on classical 

dynamics and explains classical dynamics philosophy 

of the control system design.  

(2) The control system is of good robust performance, it can 

overcome the uncertain of a controlled plant and 

remove disturbances into the system in the paper. 

(3) The design of control system needs not an exact 

mathematics model of the controlled plant. If we can 

estimate the values T in Exp. (24) and ,l h  in Exp. (29), 

we can design the control system without an exact 

mathematics model of the controlled plant. 
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