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Abstract: In this article the applications of differential flatness to some industrial systems are presented. Computational 

methods of obtaining the flat output and the straight forward method of constructing the corresponding control law are 

given. Some theoretical and industrial systems are used as illustration including the third order synchronous machine model 

and the one degree of freedom magnetic levitation system model. Computations of the flat output are done using various 

approaches. The Levine’s approach is presented in such detail as to facilitate quick understanding. Computations for the 

synchronous machine model yielded a flat output that is a function of the load angle while the magnetic levitation model 

yielded a flat output that is a function of the objects’ position. Results showing the stabilization of the applied systems in 

fault and uncertain situations are discussed.  
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1. Introduction 

THE concept of differential flatness proposed by Michel 

Fliess and co-workers [1],[2] about twenty years ago has 

evolved into a full-fledged field for the study of control 

systems in a practically new way. In this setting, 

controllability is linked with system flatness and 

controllable systems possess this flatness property [3],[4]. 

For such systems there is a solution set called flat output in 

the solution space consisting of a set of state variables that 

completely parameterize the system without the need for 

solving differential equations. 

Once this output is shown to be flat, it in effect implies 

that the system possesses a well characterized dynamics[5] . 

This is because all system parameters and control becomes 

a function of the linearizing output that can enable the 

generation of reference trajectories a-priori. The 

construction of the feedback law is done by a simple 

inversion of system equations with respect to the control. 

The scheme in derivation is an extension from the input-

output linearization scheme with zero internal dynamics.  

Fliess et-al [1] proposed the notion of endogenous 

equivalence and defined a class of dynamic feedbacks for 

classification and linearization of systems in the form of 

Fliess’ differential algebraic forms. Such classes of systems 

are the so-called differentially flat systems. One of the main 

consequences of their result is a constructive method of 

computing the feedback that exactly linearizes a flat system.  

Accordingly a control system ,M F  is differentially flat 

around p  if and only if it is equivalent to a trivial system 

in a neighborhood of p . A trivial system can be defined as 

one which is without dynamics described by a collection of 

independent variables or R Fs s

∞ , where

F y y y y y ys ( , , ,.....) ( , , ,.....)( ) ( ) ( ) ( )1 2 1 2= , with y R s⊂ y [6]. 

It is said to be differentially flat if it is differentially flat 

around every p of an open dense subset of M . The set 

y y j sj= ={ | ,....., }1 is called a flat or linearizing output of 

M  described by a collection of independent variables, the 

flat output having the same number of components as the 

number of control variables. The following deductions are 

shown with proofs in [1]. 

1. The number of components of a flat output is equal 

to number of input channels. 

2. A classic linear system is flat if and only if it is 

controllable.  

3. The controllability of differentially flat systems is 

related to the well known strong accessibility 
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property of nonlinear systems due to Sussmann and 

Jurdjevic.  

4. If a classic nonlinear system is differentially flat 

around p , then it satisfies the strong accessibility at

p . 

5. Differential flatness means that the state and input 

may be completely recovered from the flat output 

without integrating the system differential equations.  

After the introduction in Section 1, the paper discusses 

the basic theory of differential flatness in Section II. In 

Section III the procedure of computations of flat output is 

detailed. Section IV discusses the examples for computing 

flat outputs for some systems and the simulations done on 

the resulting controllers of some industrial systems on 

MATLAB. Conclusions are given in Section V while in 

Section VI the references are given.  

2. Basic Theory of Flatness 

A system variable is endogenous if it can be expressed as 

a linear combination of the input, the output and a finite 

number of their time derivatives. Otherwise it is exogenous. 

A single input single output (SISO) system is therefore flat 

or differentially flat if there exists an endogenous variable 

called the flat output, such that the input and the output can 

be expressed as a linear combination of the flat output and 

a finite number of its time derivatives [7]. Naturally any 

other endogenous variable of the system enjoys the same 

property with respect to the flat output. Thus the flat output 

differentially parameterizes all system variables.  

Generally, the definition of system flatness can be cast in 

what follows: 

The system  

f x x u( ɺ , , ) = 0                             (1) 

with x Rn∈   and u Rm∈  is differentially flat if one can 

find a set of variables called flat output;  

y h x u u u u r= ( , , ɺ, ɺɺ,....., )( )
                    (2) 

y Rm∈ and system variables,  

x y y y y q= α( , ɺ , ɺɺ,....., )( )
                     (3) 

and control,  

u y y y y q= +β( , ɺ , ɺɺ,....., )( )1
                  (4)  

with q  a finite integer such that the system equation 

),......,,,(),,......,,,(

)),,......,,,((0

)1()(

)(

+

=

qq

q

yyyyyyyy

yyyy
dt

d
f

ɺɺɺɺɺɺ

ɺɺɺ

βα

α
   (5) 

are identically satisfied [8]. 

2.1. Equivalence and Feedback 

The authors in [1] in their comprehensive paper unifying 

their theory of flatness and its associated dynamic feedback, 

formalized the concept that two systems are equivalent if 

there is an invertible transformation exchanging their 

trajectories, or if any variable of one system may be 

expressed as a function of the variables of the other system 

and of a finite number of their time derivatives. In a more 

general sense this transformation is said to be a Lie-

Bäcklund isomorphism.  

If two systems 

ɺ ( , ),( , )

ɺ ( , ),( , )

x f x u x u X U R R

y g y u y v Y V R R

n m

r s

= ∈ × ⊂ ×
= ∈ × ⊂ ×

       (6) 

and vector fields 

F x u u u f x u u u u

G y v v v g y v v v v

( , , , ....) ( ( , ), , , ....)

( , , , ....) ( ( , ), , , ....)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

=
=

  (7) 

where, 

u x z w

z a x z w with z Z Rq

=

= ∈ ⊂

α( , , )

ɺ ( , , ), ,
            (8) 

are differentially equivalent, it becomes possible to go from 

one to another by a dynamic feedback as shown in Figure 1. 

That is by a diffeomorphism of the extended state space

X Z× . This dynamic feedback is endogenous if the 

original system is differentially equivalent to the closed 

loop system. It is called endogenous because the new z  

variables can be expressed as functions of the state and 

derivatives of the input. Thus from the work in [9] it can be 

stated that, if a system is differentially flat, there exists an 

endogenous dynamic feedback such that the closed loop 

system is diffeomorphic to a linear controllable system. 

Therefore for a nonlinear system equation (1), 

where  

0)0,0( =f                                (9) 

and rank 

m
u

f =
∂
∂

)0,0(                          (10) 

its dynamic feedback linearizability means the existence 

of: 

1) dynamic compensator; 

ɺ ( , , ),

( , , ),

z a x z v z R

u b x z v v R

q

m

= ∈

= ∈
 

where 
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a

b

( , , )

( , , )

0 0 0 0

0 0 0 0

=
=

                         (11) 

2) diffeomorphism;  

ξ ξ= ∈ +Ξ ( , ), ( )x z Rn q
             (12) 

such that the ( )n q+ dimensional dynamics is given by 

ɺ ( , ( , , ))

ɺ ( , , )

( , , )

x f x b x z v

z x z v

u x z v

=
=
=

β
α

                  (13) 

and becomes a constant linear controllable system 

ɺξ ξ= +F Gv                              (14) 

 

Figure 1. Transformation of a Nonlinear System into a Linear Equivalent. 

The components of u and x can be expressed as real-

analytic functions of the component of equation (2), and a 

finite number of their derivatives (equations (3), (4)).   

The dynamic feedback is said to be endogenous if and 

only if the converse holds, that is, if and only if any 

component of y  can be expressed as a real-analytic 

function of, x , u and a finite number of its derivatives. In a 

final remark in [1], the flat dynamics of a system whose 

output is given by equation (2) is square left and right 

input-output invertible system, where any component of u
or x  may, by definition be recovered from y  without 

integrating any differential equation: It is said to possess a 

trivial zero-dynamics or a trivial residual dynamics. Figure 

2 shows the endogenous dynamic feedback linearization 

process consisting of pole placement and linearization 

loops. 

3. Generating Flat Outputs 

Differential flatness is an idea that is naturally associated 

with underdetermined systems of differential equations 

where a system of n  algebraic equations in mn +  

unknowns [4] is written as:  

nBArankBBfAx =≠=+ ],[,0,0 .       (15) 

If A is invertible and B  is full rank, then x solutions 

may be written in terms of f as  

fBAx 1−−=                             (16) 

and as such make all solutions parameterizable in terms of 

f . In this setting endogenous transformation ϕ  in which 

the original variables of the system are transformed without 

creating new exogenous variables is realized [2].  

3.1. Classical Methods 

Following [4], consider a SISO system given by the 

transfer function  

)(
)(

)(
)( su

sd

sn
sy =                          (17) 

the system is controllable if and only if the polynomials 

)(sn and )(sd are coprime, that is they have no non-

trivial common factors. By Bezout’s theorem, there exists 

polynomials )(sa and )(sb such that  

1)()()()( =+ sdsbsnsa                       (18) 

for all Cs ∈ . Define a new variable  

)(
)(

1
)( su

sd
sf = ,                        (19) 

we can write  

)()()( sfsnsy = , )()()( sfsdsu =                (20) 

multiplying both sides of (18) by )(sf we have, 

)()()()()()()( sfsfsdsbsfsnsa =+  or 

)()()()()( sfsusbsysa =+              (21) 

which implies we have a variable f  which is a differential 

function of the system input and output and a finite number 

of their time derivatives. Conversely all system variables 

and input are also differential functions of the new variable. 

This new variable qualifies as a flat output. Therefore  

given any controllable linear system in transfer function 
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form (17), the flat output can be chosen as any constant 

multiple of the variable 
1

( ) ( )
( )

f s u s
d s

= or 

( ) ( )
( )

k
f s u s

d s
=  for any 0k ≠ , for example consider the 

linear, coprime minimum phase function )(
1

1
)( su

s

s
sy

−
+= , 

from (18), ( )( 1) ( )( 1) 1+ + − =a s s b s s   

( ) ( ) ( ) ( ) 1+ + − =s a s a s s b s b s , 
2

1)( =sa  and 
2

1)( −=sb  

satisfies the equation so that from (21), 

)(
2

1)(
2

1)( susysf −= . f therefore parameterizes all system 

variables as given. 

( ) ( ) ( ) ( 1) ( ) ( ) ( )u s d s f s s f s s f s f s f f= = − = − = −ɺ  

similarly 

( ) ( ) ( ) ( 1) ( ) ( ) ( )y s n s f s s f s s f s f s f f= = + = + = +ɺ  

This treatment can be extended to the state space 

approach [4]: For a given linear time-invariant SISO 

system described by 

nmsu
asas

bsbsb
sy

n

n

n

m

m

m

m <
+++

+++
= −

−
− ),()(

0

1

0

1

1

⋯

⋯
     (22)  

 

Figure 2. Structure of Dynamic Feedback Linearization. 

with coprime polynomials in numerator and denominator 

admits a flat output )()(
0

1
su

asas
sf

n
n

n +++
= −

⋯

κ , which in 

terms of differential equation and scalar output equation 

gives: ufa
dt

fd
a

dt

fd
n

n

nn

n

κ=+++ −

−

− 01

1

1 ⋯  and 


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1
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if fx =1 , fx ɺ=2 ,…., )(n

n fx =
 

then bu

x

x

x

A

x

x

x
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d
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
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















−−−

=

−110

100
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naaa

A

⋯

⋯
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The flat output of such a system is given by 

xCf 1))(1,0,0( −= ⋯   where 

),,,( 1bAAbbC n−= ⋯⋯  is the Kalman controllability 

matrix.  

Example: Given a DC motor dynamics [4] 

+ = −
+ =

ɺ

ɺ

a e

m

LI RI v k

J B k I

ω
ω ω

                           (23) 

where I=Armature current, w=Angular Velocity�, �, �� 	 are 

electrical constants and �, �, 	
  are mechanical constants. 

The state space representation is given by 

2

1

0

 − 
 =
 
 
 

m

R

L L
C

k

JL

1 1

2 2

1

0

− −         = +           −   
 

ɺ

ɺ

e

m

kR

x xL L
uL

x xk B

J J

 

( )
2

10 1 −= =
m

JL
F C x

k
ω

2 2
1

1
0

−

 
 
 =
 
 
 

m

m

k R

JL JL L
C

k

L

      (24) 

Where 	�, ��
, � , are the controllability matrix, its 

inverse and flat output respectively. The control is 

computed using ��  as follows: 

( )1 2

1
,= = + = =

   += = + + +   
   

ɺ

ɺɺ ɺ

m

a e

m m m

x I J F B F x F
k

JL LB RJ RB
u v F F k F

k k k

ω

        (25) 

3.2. The Implicit Representation (Lévine’s Method) 

Equation (1) can be locally transformed into an 

underdetermined implicit system  

0),( =xxF ɺ                                 (26) 

for Xx ∈ , and XTuxfx x∈),(, ( Tangent space), for every 

u and rank m
du

df = . This adopts a prolonged manifold of 

solutions to the implicit representation. The author in [3] 

extends the notion of endogenous transformation (Lie-

Bäcklund Isomorphism) to the implicit system, stating that 

if two regular implicit systems of equation (6) are Lie-



 Automation, Control and Intelligent Systems 2014; 2(4): 42-52 46 

 

Bäcklund equivalent then their linear cotangent 

approximation is locally Lie-Bäcklund equivalent. The 

Implicit system equation (26) is flat if and only if it is Lie-

Bäcklund equivalent.  The system is flat if there exists local 

mappings φ  satisfying 
00 )( xy =φ  such that 

mnidfΦ i −== ,.....,1;0* . 

dt

d

x

F

x

F
dfΦ

ɺ∂
∂+

∂
∂=*

                     (27) 

where )(* FPdfΦ = , which are actually polynomial matrices 

and the differential operator 
dt

d
is the indeterminate. The 

inverse of a polynomial is not a polynomial and the inverse 

of a square matrix is not a matrix. These polynomial 

matrices have the following characteristics [3]:  

1. They require the use of special algebraic 

manipulations.  

2. 






∈ −
dt

d
MFP nmn ,)(  admits a Smith decomposition (or 

diagonal reduction) given by  

).()( , mmn∆UFVP −= θ                   (28) 

3. A matrix is 






∈
dt

d
MM qp ,

is hyper-regular if and 

only if it’s Smith decomposition leads to ,0, , pqppI −

if qp < ; to PI , if qp = ; and to











− qqp

pI

,0
 

if qp >  

4. A square matrix 






∈
dt

d
MM qp ,

 is hyper-regular if 

and only if it is unimodular- denoted by 








dt

d
u p

 a 

subgroup of invertible matrices 








dt

d
M qp ,

. 

5. )(FP is hyper-regular if and only if the linear 

cotangent approximation of the implicit system 

equation (26) is controllable implying that the 

system is flat.  

These are the compact set of matrix manipulations that 

lead to the determination of the system’s flat output.  

4. Application to Synchronous Machine 

4.1. Synchronous Machine Reduced Order Model  

From the fourth order model of the synchronous 

machine , the direct axis 
'

de  can be  assumed constant 

reducing it to a third order one-axis model [10] given by 

(29): 

τ d q fd q d d de e e x x i0
ɺ ( )' ' '= − − −  

2
2

2 0

H

w

d

dt
P D e i e i

R

m d d q q

δ
ω ω= − − − −( ) ' '           (29) 

ɺδ ω ω= − 0
 

where 

n

2 n n

n n

1
( ( )( sin )

( ) ( )( )

( )( cos ))

∞

∞

= − + −
+ + + +

+ + −

d a e d

a e d e q e

q e q

i r R e V
r R x x x x

x x e V

δ

δ
 

n n

2 n

n

1
( ( )( sin )

( ) ( )( )

( )( cos ))

∞

∞

= − + −
+ + + +

+ + −

q d e d

a e d e q e

a e q

i x x e V
r R x x x x

r R e V

δ

δ
 

4.2. Implicit Method  

Using Lévine’s necessary and sufficient conditions for 

differential flatness [3] where for the system of equations 

(29) the system order n = 3  and the number of system 

input m = 1. The notion of linear cotangent approximation 

henceforth called cotangent approximation is defined thus. 

Given a trajectory )(txt ֏ of (6)of class 
∞C on an 

interval J of ℜ , the linear time-varying implicit system 

0)())(),(()())(),(( =








∂
∂+









∂
∂

ttxtx
x

F
ttxtx

x

F ξξ ɺɺ
ɺ

ɺ      (30)  

with ΤΧ∈= )...,,( ξξξ ɺ , is defined as the linear cotangent 

approximation of equation (6) around the trajectory x .  
The system of equations (29) is first transformed to the 

implicit equivalent, obtained by eliminating the dynamics 

that contains the system input e fd , and making

),,,,,( ''
qq eeF ɺɺɺ ωδωδ equal 0, Such that 

2
0

2

2 0

H

w

d

dt
P D e i e i

R

m d d q q

δ
ω ω− + − + + =( ) ' ' ;        (31)

ɺδ ω ω− + =0 0                         (32) 

The cotangent approximation to the implicit equations 

(31) and (32) is computed from: 

P F
F F d

dt

F F d

dt

F

e

F

e

d

dtq q

( )
ɺ

,
ɺ

,
ɺ

' '= + + +










∂
∂δ

∂
∂δ

∂
∂ω

∂
∂ω

∂
∂

∂
∂

     (33) 

It is noteworthy according to the characteristics above, 

that the cotangent approximation of system of equations 

(31) and (32) is hyper-regular if and only if it is 

controllable.  And if it is locally flat around x0 , its linear 

cotangent approximation around x0  is controllable.  

Therefore there must exist V L Smith P F∈ − ( ( ))  and

U R Smith P F∈ − ( ( ))  such that 

VP F U Im n m m( ) ( , ),= −0                   (34) 

The cotangent approximation after applying equation (33) 

on equation (31) and (32) yields:  
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d

dt
a a a

−













1 0

21 22 23

                     (35) 

where:  

( )a
V

H
e R x e x Rd e qt q dt e21

0

2
= − + + +

∞ω
δ δ δ δ δ δ

det
ɺ ( cos sin ) ɺ ( cos ɺ cos )' ' ; 

a
d

dt H
D22

0

2
= +










ω
; 

a
e

H
x x V x R R V e e

d

qt dt dt e e q q23

0

2
2= − + − +









∞ ∞

ω
δ δ

'

' '

det
( ) ( sin cos ) ɺ ; 

and  

det ( ) ( )( )' '= + + + +r R x x x xa e d e q e

2
. 

We now apply the Smith decomposition algorithm to 

equation (35) in successive polynomial matrix 

manipulations using unimodular matrices of rank n  until 

P F( )  of rank mn −  reduces to lower or upper triangular 

polynomial matrix to prove its hyper-regularity. The 

unimodular matrices are constructed in such a way to 

shuffle the elements of the cotangent approximation matrix 

and achieve lower triangular form. Successive steps of the 

reduction are given as follows [11]: 

Step a1: Multiplying equation (35) with the unimodular 

matrix-1 

















100

001

010
gives 

0

21 22 23 21 23

0 1 0 1 0
1 0

1 0 0

0 0 1
2

 −    −     =        +     
  

d
d

dt
dt

d
a a a D a a

dt H

ω    (36) 

Step a2: Multiplying equation (36) with unimodular 

matrix-2 



















−

100

010

01
dt

d

reduces row 1 to [ ]001   

0 0
0 21 23

21 23

1 0
1 0 01 0

0 1 0

0 0 1 2 2
2

 −   −         =       − + + +         +           
 

d
d

dt
dt

d d d
d D D a a

D a a dt H dt H dt
dt H

ω ωω                    (37) 

Step a3: Multiplying equation (37) with unimodular matrix -3 

















010

100

001
 shuffles row 2 to make entry [2, 2] in (37) 

constant, yielding. 

0 0 0 0

21 23 23 21

1 0 01 0 0 1 0 0

0 0 1

0 1 02 2 2 2

    
    =           − + + + − + + +           

           

d d d d d d
D D a a D a D a

dt H dt H dt dt H dt H dt

ω ω ω ω           (38) 

Step a4: Multiplying equation (38) with unimodular matrix-4 























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


+







 +−

100

2

11
0

001

21
0

2323

a
dt

d
D

Hdt

d

aa

ω

  

achieves the required lower 

triangular matrix )(FP .

 
0

210 0 0

23 21 23 23

1 0 0
1 0 0 1 0 0

1 1
0

1 02
2 2 2

0 0 1

 
    
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 

d d
D ad d d d

D a D a Da a dt H dt
dt H dt H dt dt H

ω
ω ω ω          (39) 

Therefore        






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







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

 +−=
01

2

001

)( 0 D
Hdt

dFP ω                      (40)  

Equation (40) which is a lower triangular polynomial 

matrix proves the hyper-regularity of equations (29). By 

right multiplying the unimodular matrices 1 to 4 used to 

generate P F( ) , the U matrix is generated as given in 

equations 41 to 43: 

Step b1: Unimodular matrix-1 by Unimodular matrix-2.  
















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001

010
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




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
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−
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d
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Step b2: Equation (41) by unimodular matrix-3 



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
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
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dt
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Step 3 Equation (42) by unimodular matrix-4 

0

21

23 23

0

21

23 23

1 0 00 0 1

1 1
1 0 0

2

0 1 0 0 0 1

0 0 1

1 0

1 1
0

2

  
       − − + +       
     

 
 
 
 

= − 
 
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d d d
D a

dt a a dt H dt

d
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d d
D a

a a dt H dt

ω

ω

   (43) 

Equation (43) as U  can be arranged compactly  

U
d

dt

a
A

= −























0 0 1

1 0

0
1

23
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Where  A
a

d

dt H
D

d

dt
a33

23

0

21

1

2
= − + +( )

ω
. 

Thus from 

ɵ ,
U U

I
=











02 1

1

                         (44) 

ɵ
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dt
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dt H
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d

dt
a

=

− + +
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
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



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












1
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0

21
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          (45) 

Using the definition  

QUɵ =
















1

0

0

                             (46) 

 it is possible to compute by further matrix manipulations 

Q L Smith U∈ − ( ɵ )  which yields  

Q
d

dt
A

= −
−

















1 0 0

1 0

0 133

                              (47) 

where A33 is as defined above. Multiplying Q by the vector

( , , )'d d deq

Tδ ω , the last two entries in the resulting vector 

are: − +
d

dt
d dδ ω  and 1

223

0

21a

d

dt H
D

d

dt
a d deq( ) '+ +









 +

ω
δ  

which by (35) vanishes identically on X 0
. The first entry of 

the vector is therefore given by: 

( )( )1 0 0 d d de dyq

T

δ ω, , ' =                    (48) 

Equation (48) is trivially strongly closed such that  

d dyδ =                                  (49) 

and so gives the flat output 

y = δ  

Verification of the Flat Output of the Third Order Single-

Input (SMIBS) model is done by showing that all the 

system states and variables are a function of the flat output 

and its derivatives.  

ω δ ω= +ɺ 0
                          (50) 

such that 

ɺ ɺɺω δ=                                 (51) 

and thus 

1 1

2
0

2

0

0

det det
(( ) ( sin cos ))

( )
det

( ( sin cos )) ɺɺ

' ' '

'

'

R e x x e V x R e P

D
e

R e V R x
H

e q dt qt d dt e q m

d

e d e qt

− − − − − −

+ − + + − − + =

∞

∞

δ δ

ω ω δ δ ω δ
 (52) 

Equation (52) is a quadratic function that can be 

evaluated for eq

'
.  

Since the system states have been shown to be functions 

of the flat output and its derivatives, it follows that all other 

system variables which are functions of the states are also 

functions of the flat output and its derivatives.  

Hence:  

],,,,[),,( tqtdtqdiii Vvviif ∈∀= ζδδδζ ɺɺɺ            (53) 

4.3. Compensator Design and Simulation Results  

It has been shown in the preceding section that the 

components of the system states and other system variables 

depending on the system states can be expressed as real-

analytic functions of the component of δ  and a finite 

number of its derivatives thus: 

x A= ( , ɺ, ɺɺ)δ δ δ                               (54) 

The dynamic feedback is shown to be endogenous since 

the converse holds, that is, the flat output y  is expressed as 

a real-analytic function of δ  one of the states of the system. 

Thus the state of the SMIBS is a function of the linearizing 

output δ  and its derivatives up to order α = 2 . The 

endogenous feedback system to the following closed loop 

system is of order α + =1 3 , so that from the linear 

system  

ɺɺɺδ = v                                           (55)  

the compensator follows. Considering the systems’ 

dynamical equations, perform the following state 

transformations:  
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ɺ ɺ ɺ

ɺ ɺɺ ɺɺ ɺ

ɺ ɺɺɺ ɺɺɺ ɺɺ

z z y

z z y

z y v

1 2 1 0

2 3 1

3 1

= = = = −

= = = =

= = = =

δ ω ω
δ ω

δ ω

               (56) 

This yields the equivalent normal form for the system, 

from which we can compute the nonlinear controller by 

inverting the expressions from ɺɺω and
e fd

. The state 

transformations are invertible and exist throughout the 

transient operating zone 0 180< <δ o . Using the 

network parameters of figure (3), the resulting excitation 

control is given by [11]:  

e
H v

fd =










τ
ω

ωd0

0

d

'

d

'

q

'

q

'

d d

'

dE

2

det
+

D

det
+ Ae + Be - Ce + e + (x - x )i
ɺ

ɺ  (57) 

where, 

A = 2R e - R V sin - x V cos ;eT d

'

eT qt
ɺ ∞ ∞δ δ  

B = x V sin( - R V cos( ;qt eT∞ ∞δ δ δ δ) ɺ ) ɺ  

C = (x - x )e - x V cos( - R V sin( ;dt qt d

'

dt eT
ɺ ) ɺ ) ɺ∞ ∞δ δ δ δ  

E = (x - x )e - x V sin - 2R e + R V cos ;dt qt d

'

dt eT q

'

eT∞ ∞δ δ  

and 

ɺ ) ) ɺ)e =
1

det
((x - x ) + x )(x cos( + R V sin( e ;d

'

q d

'

dt dt eT q

'δ δ δ∞ + ReT
 

R r R x x x x x xeT a e dt d e qt q e= + = + = +( ) ; ( ) ; ( )' ' . 

e fd  is hereby proved also to be a function of the flat 

variable and its derivatives, that is  

e fd = β δ δ δ( , ɺ, ɺɺ)                             (58) 

The loop closure is then done to stabilize the system.  

)()()( *

13

*

12

*

11 δδδδδδ ɺɺɺɺɺɺ −−−−−−= kkkv        (59) 

and choose ki  appropriately such that the linear time 

invariant error dynamics  

e k e k e k e
( )

ɺ ɺɺ
3

1 2 3= + +                    (60) 

where e j j j( ) ( ) * ( )( )= −δ δ   are stable. 

Equation (57) is the control law referred to as Field 

Voltage Dynamic Feedback Controller (FVDFC), [11] 

while (59) is the linear input that stabilizes the system to 

equilibrium. Simulation of the system was done by 

connecting the synchronous machine as a single machine 

infinite bus system (SMIBS) under a short circuit fault 

situation as shown in Figure 3. 

 

Figure 3. Fault Location on the Single Machine Infinite Bus System 

(SMIBS) 

 

Figure 4. Responses of Speed Deviation to 3-Cycle Fault with and without 

FVDFC. 

 

Figure 5. Responses of Terminal Voltage to 3-Cycle Fault with and 

without FVDFC. 

Some simulation results with the system equipped with 

the designed controller are presented in Figures 4 and 5 

which are representative of the system performance. These 

figures clearly show the responses of the controller to a 

three-phase short circuit fault of 3-cycles duration. The 

system was restored to steady state operating point as the 

controller damped the fault oscillations under three seconds 

as shown by the machine speed deviation and the 

corresponding terminal voltage. The oscillations in the 

uncontrolled system were not damped within the same time 

duration. 
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Figure 6. Block diagram of INTECOTM maglev model 

5. Application to Magnetic Levitation 

The model development of the magnetic levitation is 

based on the system developed by INTECOTM for the 

purpose of teaching. The system block diagram is shown in 

Figure 6. INTECO used empirical analysis to model the 

control of the current that goes to the electromagnet. The 

resulting linear relationship is found to be a straight line 

bauui +=)(  with a dead zone. The constants a  and b

are determined from the experimental data. The system 

dynamics are described in (61) – (63).  

21 xx =ɺ                                   (61) 
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Where g  is gravitational force, m  is mass of object,  

12121 ,,,,_,_ ckpppfpf i  are system constants.

 

Flat output 

The flat output can be determined using Levine’s method 

by applying the implicit function theory and eliminating the 

dynamics with control. The variational equation is given 

by[12]: 
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or compactly  
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manipulation of polynomial matrices, the following right 
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Therefore, 
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Such that the first line reads 1dxdy =   which gives 

1xy =  the flat output, while the second line is identically 

equal to zero from (66) showing the flatness of the system 

dynamics. This follows that the flat output of this maglev 

model is the ball position which is also a system variable. 
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5.1. Compensator Design and Simulation Results 

From the computed flat output the control law follow 

from the following compensator  

Luxxy

xxy

xxy

xy

===
==
==

=

21

21

21

1

ɺɺɺɺɺɺɺɺ

ɺɺɺɺɺ

ɺɺ
                        (69) 

From (62), we have  
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And from 3xɺ
 
and (69) the control law is computed as 
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where 2
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And the linear control is given by 
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The gains ki are chosen such that the linear time 

invariant error dynamics  

ekekeke ɺɺɺ
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where e
j j j( ) ( ) * ( )

( )= −δ δ  are stable. To compute the 

gains, (72) can be rewritten as a Hurwitz polynomial by  

012
2

3
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The closed loop characteristic polynomial of a third 

order equivalent system is given in terms of the natural 

frequency and damping ratio by 

)()2( 22 βωξω +++ sss nn                 (75) 

such that comparing (74) and (75) gives 

nnnn kkk ξωβωβξωβω 2,2, 3
2

21 +=+==  

Figures 7 and 8 shows the ball position and the Flatness 

control applied to stabilize it. The results are for a ten 

second simulation of the maglev system to levitate a ball to 

a set point of 0.006 m.  

 

Figure 7. Ball position for a ten second simulation 

 

Figure 8. Applied controls for a ten second simulation 

Figs. 9 and 10 show the response of the system to 

decreasing set point levels like in descending a staircase. 

This task seems to be a challenging control task as can be 

seen by the sloppy response of the PID controller used on 

the same system as seen in fig 10. The flatness based 

controller did not show the same sloppy behavior for the 

descending set point levels as seen in fig 9. The PID 

behaved like it is having difficulty coping with the sharp 

transitions of the ball position. Studies of other systems 

show that the flatness controller gives a strong first swing 

control and as well improves stability margin of the system.  

 

Figure 9. Response to input [.005, .004, .003, .002, .001] mm using the 

Flatness based controller 
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Figure 10. Response to input [.005, .004, .003, .002, .001] mm using the 

PID controller 

6. Conclusion 

This paper presented some basic theory of flatness-based 

feedback linearization, a variant of the well-known 

techniques of feedback linearization. Theoretical 

formulation and examples to enhance learning of the 

concept of flatness and how it is computed for certain 

industrial systems is given. A novel method of computation 

of the flat output developed by Jean Levine is introduced 

and two industrial systems used to illustrate its efficacy. An 

application to the synchronous machine and magnetic 

levitation system was achieved by constructing a control 

law around the flat output. The method  requires the 

mathematical analysis of system models for flatness - a 

condition that describes how well characterized the model 

is with a view to determining its possession of a “virtual” 

(flat) output driven by contributions made by the system 

state variables. This output was determined for the given 

models and used to obtain corresponding feedback laws for 

the transformed linear systems and equipped with a linear 

controller used to stabilize the systems to steady state or 

damp system oscillations induced by fault.  For the one-

axis single input synchronous machine (SMIBS) model 

there exists a flat output the rotor angle (delta)– a system 

variable while for the magnetic levitation system the flat 

output computed is the ball position which is also a system 

variable. The simulation results obtained agreed with the 

expectations and performed well when compared with the 

PID schemes.  
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