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Abstract: This paper presents the correlation between the predicted and desired/targeted thermal conductivity of food 

products as a function of moisture content, temperature and apparent density. The food products considered in this work are 

the bakery products which include bread, bread dough, cake, and whole-wheat dough. Statistical data of results from 

previous work in existing literatures were used in this work for a wide range of moisture contents, temperatures and 

apparent densities resulting from baking conditions. The results of this work showed straight line curves when the predicted 

values of thermal conductivity were plotted against the targeted values of thermal conductivity. This demonstrates 

correlation between the predicted and targeted thermal conductivities when the points are joined together (best fit-points), 

hence, a very good agreement between the predicted and the desired values of thermal conductivity. The two ANN models 

that were finally selected, after several configurations had been considered and evaluated, are the optimal ANN model that 

was found to be a network with two hidden layers and eight neurons and the simplest ANN model was equally found to be 

a network with one hidden layer and ten neurons. The estimated errors between the predicted and desired (or targeted) 

thermal conductivity values of the bakery products for both the optimal ANN and simplest ANN models are the MRE, 

MAE and SE. Moreover, the results also showed that the optimal ANN model had an MRE of 0.04878%, an MAE of 

0.0054W/mK and an SE of 0.0015W/mK while the simplest ANN model was estimated to have an MRE of 0.03388%, an 

MAE of 0.0034W/mK and an SE of 0.0011W/mK. These errors are approximately equal to zero (i.e., 0 W/mK) and could, 

therefore, be regarded as a good result for the prediction. Since the simplest ANN model had the least values of all three 

errors (MRE, MAE and SE) when compared with other configurations, including the optimal ANN model, it is, however, 

regarded as the best ANN model and is, thus, recommended.  

Keywords: Thermo-Physical Properties of Biological Products, Thermal Conductivity of Bakery Products,  

Back-Propagation, Artificial Neural Network, Mean Absolute Error, Mean Relative Error, Standard Error 

 

1. Introduction 

In a typical baking process, bakery products undergo 

physical, chemical and biochemical changes that 

cumulatively result in expansion of bulk volume, 

evaporation of water, formation of a porous structure, 

denaturation of protein, gelatinization of starch, formation 

of crust and browning reactions respectively. During such 

processes, ovens powered by gas, electricity, firewood, 

charcoal, or microwaves are used for generating the 

required heat. 

The thermal conductivity of a material can be defined as 

the ability of a substance to conduct heat. It is a property of 

materials that expresses the heat flux, F (W/m
2
) that will 

flow through the material if a certain temperature gradient 

∆T (K/m) exists over the material. Thermal conductivity of 

materials can be defined as the heat flow per unit area per 

unit time when the temperature decreases by one degree in 

unit distance. 
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Accordingly, heat is transferred mainly by convection 

from the heating media, and by radiation from oven walls 

to the product surface and then by conduction to the 

geometric centre. At the same time, moisture diffuses 

outward to the product surface [1, 5]. 

The problem of interest in the design of bakery ovens is 

concerned with the promotion of the required rate of heat 

transfer with the minimum possible surface area and 

temperature difference. And from the engineer’s point of 

view, it is usually sufficient to know the total quantities of 

energy emitted and absorbed by the material at various 

temperatures [16]. As such, it is frequently necessary to 

establish the rate at which heat will be conducted through a 

solid if a known temperature difference exists across the 

solid. For such purposes, and especially if the process 

varies with time, sophisticated mathematical techniques are 

required to establish this, the phenomenon being known as 

transient-heat conduction. A knowledge of the product 

properties, including thermal conductivity as a function of 

processing conditions is needed in order to predict the 

temperature and water distribution in the product during 

baking [5, 8]. The temperature and moisture distribution 

within the porous product can be predicted using diffusion 

equations of heat and water. 

2. Literature Review 

Neural networks have been trained to perform complex 

functions in various fields including pattern recognition, 

identification, classification, speech, vision, and control 

systems. Today, neural networks can be trained to solve 

problems that are difficult for conventional computers or 

human beings. Commonly, neural networks are adjusted (or 

trained) so that a particular input leads to a specific target 

output. Typically, many such input/target pairs are needed 

to train a neural network. 

Linko and Zhu also stated that of all the various 

modelling approaches of predicting the thermal 

conductivity of a wide range of foods, including bakery 

products, the neural network-based models have proven to 

be excellent. Amongst the major benefits of using ANN are 

excellent management of uncertainties, noisy data and non-

linear relationships. Neural network modelling has 

generated increasing acceptance and is an interesting 

method in the estimation, prediction and control of 

bioprocesses [9]. 

Review of past work showed that Ruan et al. applied 

ANN modelling to predict the rheological properties of 

dough in 1995 [15]. Fang et al. also applied the ANN 

modelling to predict the physical properties of ground 

wheat in 1998 [18] while Hussain and Rahman, in 1999, 

predicted the thermal conductivity of fruits and vegetables 

with the application of ANN modelling [6]. Similarly, ANN 

modelling was applied by Myhara et al. in 1998 for the 

prediction of isotherms of dates [11], Ni and Gunasekaran 

in 1998 [7] and Xie and Xiong in 1999 [13] also applied 

ANN modelling differently for the prediction of food 

quality. Recently, Sablani and Shayya in 2001 applied ANN 

modelling for the prediction of heat penetration parameters 

in Stumbo’s method of thermal process calculations [20]. 

Rahman’s model [4] (data considered only above 0°C) 

predicted thermal conductivity with mean relative errors of 

24.3 and 81.6%, respectively. This model was able to 

predict thermal conductivity with a mean relative error of 

12.6% and a mean absolute error of 0.081 W/mK. The 

model can be incorporated in heat transfer calculations 

during food processing where moisture, temperature and 

apparent porosity dependent thermal conductivity values 

are required. 

Shyam et al. (2002) optimal ANN model was found to be 

a network with 6 neurons in each of the 2-hidden layers. 

This optimal model was capable of predicting the thermal 

conductivity values of various bakery products (such as 

bread, bread dough, French bread, yellow cake, tortilla chip, 

whole wheat dough, baked chapatti and cup cake) for a 

wide range of conditions with a mean relative error of 10%, 

a mean absolute error of less than 0.02 W/m K and a 

standard error of about 0.003 W/m K. The simplest ANN 

model, which had 1-hidden layer and 2 neurons, predicted 

thermal conductivity values with a mean relative error of 

less than 15% [3]. All these work were successfully carried 

out with satisfactory results obtained using ANN modelling. 

In predicting thermal properties of a material at desired 

conditions, several modelling approaches have been 

proposed and none of them was found suitable for use over 

a wide range of foods.
 
According to Murakami and Okos 

(1989) the most promising approach is based on chemical 

composition, temperature and physical characteristics [12]. 

More recently, Baik et al. in 2001 reviewed common and 

new measurement techniques, prediction models and 

published data on thermo-physical properties of bakery 

products [2]. 

The series model of specific heat, density and thermal 

diffusivity has been successfully applied to many food 

materials including porous materials such as baking 

products. However, for the prediction of thermal 

conductivity of porous food, there is still some theoretical 

argument for the use of the structural models [12]. 

Murakami and Okos (1989) evaluated nine different 

structural models with specific types of porous foods and 

found that parallel and perpendicular models showed 12–97% 

and 18–61% standard errors respectively. 

Among the models, Keey’s model was found to be the 

best prediction model for porous grains and powders. The 

model produced standard errors of <28% for full fat dry 

milk and <10% for other food materials. In addition, all 

structural models neglect interactions between components, 

phase transition and distillation heat transfer, which may be 

significant in the baking process [1]. Hence, most thermal 

conductivity models reported are usually empirical rather 

than theoretical. 
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3. Methodology 

In this section, the various materials and methods used 

are discussed here. 

3.1. Materials 

Basically, baked products made by bakeries can be 

divided into three (3) different groups: 

• Bread loaves (e.g. Wheat bread, rye bread, specialty 

bread) 

• Small baked products (e.g. rolls, buns, croissants) 

• Fine baked goods (e.g. plaits, apple strudel, biscuits, 

salts pretzels) 

Depending on the specific type of bakery product to be 

produced and associated production process, a wide variety 

of raw materials are available to the baker. In addition to 

the basic Raw materials (flour, water, salt and yeast) 

various other ingredients can be used. The ingredients used 

have an n influence on the characteristics or technological 

aspect of the dough. 

Flour 

Flour account for the main portion of the raw materials 

involved in baked product production and the thermal 

conductivity of flour need to be considered while applying 

the neural network. Flour used is mainly those extracted 

from two basic cereals – wheat and rye. Flour from other 

grains which do not contain gluten-forming proteins is 

usually blended with wheat flour for the production of 

bakery products. The quality of flour is basically dependent 

on its intended use. The flour quality depends on the 

following factors: 

• Wheat variety 

• Growing conditions 

• Grain storage 

• Flour production technique 

• Flour storage 

Table 1. Example of a requirement profile for various baking flours  

 
Patent gluten % High-Ash whole-Grain 

Flour Flour Flour Flour 

Moisture % 13.0-15.0 13.0-15.0 13.0-15.0 11.0-13.0 

Ash % DM 0.38-0.60 0.64-0.78 1.05-1.15 1.75-1.95 

Protein % 12.0-14.0 13.5-15.0 14.0-15.5 13.5-15.0 

Wet gluten % 28.0-33.0 31.0-35.0 32.0-36.0 29.0-33.0 

Falling N umber sec 320-410 300-390 280-380 300-380 

Sedimentation ml 38-45 38-43 25-30 NIL 

Water Absorption % 60-64 61-65 65-70 66-71 

Weakening FU 20-70 60-90 60-90 60-90 

Dough energy cm2 90-130 80-110 55-85 60-90 

Max. viscosity AU 500-1000 350-800 300-550 250-500 

 

Average patent flour (first grade) is made up of the 

following: 

• Carbohydrates: 73.5%. This includes starch: 71%, 

soluble sugars 2.4% and cellulose 0.1%. 

• Proteins: 11.0 % :This includes gluten-forming 

proteins 10% & water soluble proteins 1% 

• Water:14% 

• Fat: 1.0% 

• Minerals: 0.5 % 

In terms of quantity, carbohydrates account for the 

greatest portion in flour which incidentally forms the 

greater part of bakery products. Starch essentially fulfills 

the following functions: (1) a source of nutrient for yeast 

after enzymatic degradation, (2) absorption of free dough 

water during gelatinization, (3) contribution to crust, crumb 

and coloration formation.  

The content of soluble sugar substances in wheat flour 

amounts to approximately 1.5 – 3%. The main soluble 

sugar substances are glucose, maltose and dextrin. They are 

dissolved during dough production in the available dough 

liquid. Glucose and Maltose are available as yeast food 

while Dextrin cannot be fermented by yeasts 

Thermal properties (thermal conductivity and diffusivity) 

of gluten and glutenin were measured in the temperature 

range 60-175°typically used in extrusion processing. 

Thermal conductivity and diffusivity of gluten decreased 

with increasing temperature and increased with increasing 

moisture content. Thermal conductivity and diffusivity of 

glutenin increased with temperature and moisture content. 

Thermal conductivity of gluten was 0.06-0.35 W/m-C and 

glutenin was 0.29-0.49 W/m-C for the temperature range 

60-175°and moisture content range of 0-30%. 

3.2. Measurement of Thermal Conductivity 

Thermal conductivity of materials can be measured and 

obtained through different materials. Depending on the 

measurement time these methods can be classified as either; 

• Steady State or 

• Transient or Unsteady 

These two methods are explained below: 

A. Steady State Method 

In the steady state methods, the measurement time can be 

much longer for poor thermally conductive samples than in 

the transient methods. During testing, moisture migration 
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and property changes can occur due to long exposure to 

high temperatures. Thus, this method may not be suitable 

for measurement of the thermal conductivity of bakery 

products. The steady state methods include: 

• Guarded hot plate 

• Differential scanning calorimeter (DSC) attachment 

method 

• Capped column test device 

(i) Guarded hot plate Method 

This method is a representative steady state method. A 

time- independent heat flow is generated through the 

sample between a heat source and a heat sink. This method 

is mathematically simple to process, and it is easy to 

control experimental conditions. The k values can be 

calculated as a mean value measures over the temperature 

interval used in the experiment using Fourier’s heat 

conduction equation. Experimental uncertainty in the 

measured thermal conductivity of biscuit dough was ≤ 7.4% 

using a similar method, single-plate method [22]. This 

evaluation was based on combination of instrumentation 

errors, geometrical uncertainties, and deviations from the 

assumed one-dimensional nature of heat flow. 

(ii) DSC Attachment Method 

In order to alleviate the disadvantage of conventional 

steady state method, an attachment to a DSC was 

constructed by Buhri and Singh [23]. The main innovations 

are relatively rapid measurement (10 to 15 min), small 

sample size, and no risk of drying of the samples. The 

thermocouple probe was inserted into the sample, and the 

DSC heating pan temperature was kept at 40
o
C. After 5 

minutes the sample initial temperature was recorded. The 

pan temperature was then immediately increased by 10
o
C. 

After 10 to 15 minutes, a new steady state existed, and the 

final sample temperature was recorded. The k was obtained 

using the following equation, which is based on Fourier’s 

heat conduction equation: 

� = 	 �	∆�
�(∆	
�	∆	�	)

                            (1) 

where k = thermal conductivity, L = sample length, 

∆Q = difference of energy required to maintain pan 

temperature, 

A = sample area perpendicular to heat flow, 

∆t2 = final temperature difference between DSC heating 

pan and sample 

∆t1 = Initial temperature difference between DSC heating 

pan and sample 

(iii) Capped column test device 

The use of a capped column test device was introduced 

by Zhou et al [24]. Experiments with the capped column 

test device were conducted with constant heat flux and no 

net water loss. Constant heat flux was provided by 

circulating hot cold water at constant temperatures at the 

two ends of the cylindrical test sample (diameter 3cm, 

height 5cm, and 2.5cm). The test sample was enclosed in 

polystyrene foam to minimize heat loss to the surroundings. 

To eliminate the gravity-induced moisture migration effect, 

the capped column test device was operated horizontally. 

Temperature distribution along the height of the test 

sample water stream was measured. The moisture content 

distribution of test sample was determined by measuring 

moisture content of the sample cut into several section of 

equal height. The k value can be determined by applying a 

heat and mass transfer equation to the experimental 

temperature and moisture gradient data. The measurement 

is fast (within several minutes), and there is no worry about 

experimental deviation because of the moisture gradient, 

because the measurement device and data analysis are 

designed to evaluate thermal and mass transfer properties 

simultaneously. 

B. Transient Method 

The transient techniques are most suitable for bakery 

products because testing is very fast and it yields more 

accurate results. In the transient method, the sample is 

subjected to a time-dependent heat flow and the 

temperature is measured at one or more points within the 

sample or at its surface. The transient technique includes: 

• Line heat source probe method 

• Temperature history 

• Transient hot strip method (THS) 

(i) Line Heat Source Probe Method 

This method is recommended for most food applications, 

including bakery products. The method is simple and fast 

(measuring times are between 3 and 600s) and requires 

relatively small samples, but it does require a fairly 

sophisticated data acquisition system. The probe (0.66mm) 

consists of a constantan heater wire and chromel-

constantan thermocouple wire. 

A line heat source probe is embedded in the sample 

(regarded as an infinite body), which is initially at a 

uniform temperature, resulting in a cylindrical temperature 

distribution. Heating and temperature monitoring occur 

simultaneously. The rate of temperature rise of the heater is 

directly related to the sample’s conductivity. The slope of 

the linear portion of each data set was used to determine 

effective thermal conductivity by equation (2) 

							� = �
����
���

��	(	
�	�)
                                 (2) 

where k = thermal conductivity of the sample,  

τ1 = initial time when probe heater was energized, 

τ2 =  final time since probe heater was energized,  

t1 = temperature of probe thermocouple at t1, 

t2 = temperature of probe thermocouple at t2, 

Q = heat flux generated by probe heater.  

In order to obtain correct results and avoid edge effects 

in a line heat source probe method, the following 

constraints [25] should be considered: 

Probe size: �� < 2/5	√(	��� 	)                        (3) 

where rp = probe radius,   = thermal diffusivity of the 

sample, ! = time, test duration 
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Size of sample: �" > 2.6√ !                     (4) 

where �" = sample radius 

Other experimental errors can be produced by inserting a 

probe into unstable structure because this may rupture the 

structure close to the probe, giving rise to false values. 

Thus, the use of a linear movement probe header is strongly 

recommended for thermal conductivity measurement using 

this method. 

(ii) Temperature History  

This method is suitable for thermal conductivity of 

porous, fine particles grains or beans. By measuring the 

temperature profile in a product subject to a known energy 

flow, k and  	can be calculated (k = thermal conductivity 

and   = thermal diffusivity). This method requires rather 

long measuring times, from 10 to 200 minutes. For bakery 

products, this method could be applied to bread dough and 

tortilla. 

(iii) Transient Hot Strip Method (THS) 

A thin foil of platinum or nickel serves both a heat 

source and a temperature sensor. A constant current is 

supplied to the metal foil and the voltage increase is 

monitored over a short period; typically 5 seconds. The 

voltage change is due to the temperature increase, normally 

less than 1℃, which causes an increase in the electrical 

resistance of the metal strip. The thermal properties of the 

surrounding material determine the temperature change in 

the material foil. The THS method has been used mostly for 

building materials and liquids [26], but it was also applied 

measuring the thermal conductivity of potatoes, meat and 

dough [27]. The time needed for one measurement often 

has to equilibrate before the test can start. 

3.3. Methods 

(i) Mathematical Modelling for Thermal Conductivity of 

Bakery Products 

Although the exact mechanism of heat conduction in 

solids is not entirely understood, it is believed, however, to 

be partially due to the motion of free electrons in the solid 

matter, which transport energy if a temperature difference is 

applied (Refer to Fig.1) and the conceptual representation 

of Oven dynamics during typical baking process as 

depicted in figure 2 below. 

heat & moisture

(high)

(low)

apparent 
thickness

l

heat from source

T
L

T
H

temperature
gradient, Td

 

Fig. 1. Conceptualisation of thermal conductivity of a bakery product 

bread
dough

bread/
baking pan

heat & moisture

heat source

heat flux

(free convection)

 

Fig. 2. Conceptual representation of Oven dynamics during typical Baking 

process 

From Fourier’s law of heat conduction, the rate at which 

such heat is conducted through a body per unit cross-

sectional area is said to be proportional to the negative of 

the temperature gradient existing in the body [16]. In other 

words,  

TQ ∇−∝                            (5) 

The proportionality factor is called the thermal 

conductivity of the material. By definition, it is the ability 

of the material to conduct heat and thus, a measure of the 

rate at which heat flows through a material between points 

at different temperatures, measured in watts per meter per 

degree.  

As a property, the thermal conductivity expresses the 

heat flux, Q (W/m
2
) that will flow through the material if a 

certain temperature gradient, ∆T (K/m) exists across the 

material. That is, it is the heat flow per unit area per unit 

time when the temperature decreases by one degree in unit 

distance. Thus, 

∆x

∆T
kAQ −=                               (6) 

or  

l

TT
kAQ LH −−=                           (7) 

where Q = heat flux, k = thermal conductivity, A = cross-

sectional area, TH = temperature at hot end, TL = 

temperature at cold end, and l = thickness of material 

respectively, and the negative sign indicates that the heat 

flow is positive in the direction of temperature fall. 

(ii) Training the Ann Model Using Back Propagation 

Algorithm 

Neural networks have been trained to perform complex 

functions in various fields including pattern recognition, 

identification, classification, speech, vision, and control 

systems. Today, neural networks can be trained to solve 

problems that are difficult for conventional computers or 

human beings. Commonly, neural networks are adjusted (or 

trained), so that a particular input leads to a specific target 

output. The schematic of such a situation is shown in Fig. 3 

where the network is adjusted based on a comparison of the 

output and the target until the output matches the target. 
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Typically, many such input/target pairs are needed to train a 

neural network. 

The back-propagation algorithm was utilized in model 

training. A hyperbolic-tangent transfer function was also 

used in all cases. Properly trained back-propagation networks 

(Fig. 4) tend to give reasonable answers when presented with 

unfamiliar inputs that have never been seen earlier. Typically, 

a new input leads to an output similar to the correct output 

for input vectors used in training that are similar to those 

being presented. This generalization properly makes it 

possible to train a network on a representative set of 

input/target pairs and get good results without training the 

network on all possible input/output pairs. 

The back-propagation algorithm uses the supervised 

training technique where the network weights and biases 

are initialized randomly at the beginning of the training 

phase. For a given set of inputs to the network, the response 

to each neuron in the output layer is calculated and 

compared with the corresponding desired output response. 

The errors associated with desired output response are 

adjusted in the way that reduces these errors in each neuron 

from the output to the input layer. 

In order to avoid the potential problem of over-training 

or memorization while employing the back-propagation 

algorithm, the option of saving the best result is adopted 

during the selected number of training cycles of 2,000. 

Input
Neural network

including connections 
(weights) between

Output

Adjust 
weights

TargetCompare

 

Fig. 3. Adjusting (or training) of a Neural network 

(iii) Optimal Configuration of Ann Model for Bakery 

Products 

Upon using the mean relative error (MRE), mean absolute 

error (MAE) and standard error (SE) as standard criteria, the 

performances of the various ANN configurations were 

compared. The mathematical representation of these error 

parameters are defined in equations 8 to 10 as follow [10, 14]: 

MAE 



 −= ∑ =

n

i PD )KK(
1n

1
                     (8) 

MRE 



 −= ∑ =

n

i DPD K/)KK(
1n

1
              (9) 

SE 



















−

−
=
∑ =

1n

2

1

n

i
PD )K(K

                 (10) 

where n is the number of data points, KD and KP are the 

desired and predicted values of thermal conductivity 

respectively.  

The optimum configuration of the network was chosen 

by selecting the lower value from the different 

configuration of the network. It was evidently based upon 

minimizing the difference between the neural network 

predicted values and the desired outputs. The datasets of 52 

cases obtained from other literature [1] were divided into 

two sets. The first set consisted of 36 (∼70%) cases for 

training/testing and 16 (∼30%) cases for validation 

(simulation), chosen randomly from the set of 52 cases.  

4. Simulation and Results 

4.1. Simulation 

Computer simulation of ANN was employed for the 

purpose of this work using the MATLAB version 7.0.4.365 

(R14) Service Pack 2 commercial software package with 

embedded neural network add-in toolbox. 

Several ANN models were simulated (or trained) using 

the thermo-physical properties datasets of Table 2. The 

feed-forward network structure with input, output and 

hidden layers were also used and the generalized network 

structures are as shown in Fig. 5 and Fig. 6 respectively. 

Table 2. Thermal conductivity of dough and bakery products 

Product Temp. (oC) Moisture content (%) 
Apparent 

Density (kg/m3) 

Thermal Conductivity 

(W/mK) 
Technique 

Bread 22 28 - 36 190 – 210 0.091 - 0.104 Line heat source [19] 

Bread dough -43.5 - 21 43.5 – 46.1 1100 0.500 - 0.920 Transient hot strip [27] 

French bread 22 42.0 161.4 0.0989 Linear heat source [17] 

Yellow cake batter 22 35.5 – 41.5 300 – 694 0.121 – 0.223 Linear heat source [17] 

Cup cake batter 20 - 104 25 - 37 272 – 815 0.068 – 0.290 Linear heat source [1, 2] 

Tortilla chip 25 1.4 – 35.6 520 – 880 0.09 – 0.23 Linear heat source [4] 

Whole wheat dough 35 – 62.5 42.4 – 46.0 1035 – 1093 0.221 - 0341 Modified guarded hot plate [15] 

Baked chapatti 35 – 62.5 38 – 48.7 1050 – 1200 0.142 - 0343  

      

 

  



 Advances in Bioscience and Bioengineering 2014; 

Fig. 4. A back propagation network

Fig. 5. Generalized multilayer neural

Fig. 6. Generalized multilayer neural network obtained

For the purpose of this work, the input

3 neurons which corresponded to a 

content, temperature and apparent density

while the output layer had 1 neuron

thermal conductivity. The number of 

neurons within each hidden layer can 

the complexity of the problem and dataset.

number of hidden layers was varied 

neurons within each of these layers were

16 with increments of 2. This resulted

networks. 

4.2. Results of Simulation 

Once a given ANN configuration was

input data, its performance was evaluated

dataset. The analysis was repeated several

configuration (out of 16) that minimized

measures: MRE, MAR and SE, was

optimum.  

The error measures associated with

configurations for prediction of thermal

presented in Table 3. The optimal 

included 2-hidden layers with 8 neurons

MAE, MRE and SE for this optimal 

0.0054W/mK, 4.8776 X 10
-4

 W/mK (4.8776

0.0015 W/mK respectively (shown highlighted

Advances in Bioscience and Bioengineering 2014; 2(2): 14-24 

 

 

A back propagation network 

 

neural network 

 

obtained with MATLAB 

put layer consisted of 

 product’s moisture 

density respectively, 

neuron representing the 

of hidden layers and 

 be varied based on 

dataset. Moreover, the 

 from 1 to 2. The 

were varied from 2 to 

resulted in a total of 16 

was trained using the 

evaluated using the same 

several times. The ANN 

minimized the three error 

was selected as the 

with different ANN 

thermal conductivity are 

ANN configuration 

neurons in each layer. The 

 configuration were 

(4.8776 X 10
-2

 %) and 

highlighted below). 

Table 3. Error parameters in the prediction

different neural network configurations

No. of 

hidden 

layers 

No. of 

neurons in 

each hidden 

layer 

MRE

1 2 0.17

1 4 4.2 

1 6 0.035077

1 8 0.18

1 10 0.03388

1 12 0.26

1 14 0.090897

1 16 0.12

2 2 0.24

2 4 0.41

2 6 0.37

2 8 0.048776

2 10 0.29

2 12 0.22

2 14 0.17

2 16 0.22

Table 4. Error prediction for 1 hidden

neurons 

No. of neurons in 

each hidden layers 

MRE (%

x10– 2) 

2 17 

4 420 

6 3.5 

8 18 

10 3.4 

12 26 

14 9.1 

16 12 

Table 5. Error prediction for 2 hidden

neurons 

No. of neurons in 

each hidden layers 

MRE (% 

x10– 2) 

2 24 

4 41 

6 37 

8 4.88 

10 29 

12 22 

14 17 

16 22 

4.3. Discussion of Results 

Tables 3 and 4 show the

prediction of thermal conductivity

layers with 2 to 16 neurons in

The corresponding charts of 

Figs. 7and 8 respectively. For

diagrams, there was a considerable

 20 

prediction of thermal conductivity with 

configurations 

MRE (%) 
MAE 

(W/mK) 

SE 

(W/mK) 

0.17 0.0199 0.0046 

 0.2212 0.0970 

0.035077 0.0038 0.0011 

0.18 0.0191 0.0050 

0.03388 0.0034 0.0011 

0.26 0.0297 0.0073 

0.090897 0.0149 0.0041 

0.12 0.0115 0.0038 

0.24 0.0298 0.0075 

0.41 0.0641 0.0125 

0.37 0.0606 0.0121 

0.048776 0.0054 0.0015 

0.29 0.0441 0.0106 

0.22 0.0382 0.0095 

0.17 0.0166 0.0047 

0.22 0.0323 0.0072 

hidden layer with their corresponding 

(% MAE (W/mK 

x10– 3) 

SE (W/mK 

x10– 4) 

19.9 46 

221.2 970 

3.8 11 

19.1 50 

3.4 11 

29.7 73 

14.9 41 

11.5 38 

hidden layers with their corresponding 

MAE (W/mK 

x10– 3) 

SE (W/mK 

x10– 4) 

29.80 75 

64.10 125 

60.60 121 

5.40 15 

44.10 106 

38.20 95 

16.60 47 

32.30 72 

the error parameters in the 

conductivity for 1- and 2-hidden 

in each respective hidden layer. 

 Tables 4 and 5 are shown in 

For each of the corresponding 

considerable and first-rate agreement 



21 Ajasa, Abiodun Afis et al.:  Thermal Conductivity of Food Products using: A Correlation Analysis Based  

on Artificial Neural Networks (ANNs) 

between the predicted and desired/targeted values of 

thermal conductivities for different parameters of MAE, 

MRE and SE. 

It can be concluded that the predicted thermal 

conductivity is good, efficient and credible prediction for 

thermal conductivity of bakery products. 

 

Fig. 7. Corresponding chart showing the error values for 1-hidden layer 

 

Fig. 8. Corresponding chart showing the error values for 2-hidden layers 

4.4. Training, Validation and Prediction 

4.4.1. Training Dataset 

To reveal the credibility of prediction (with the training 

data set) from the optimal ANN, predicted values of 

thermal conductivity are plotted against the desired/targeted 

values of thermal conductivity as shown in Fig. 9. Similarly, 

that of the simplest ANN model is shown in Fig. 10. These 

two figures showed straight line curves, demonstrating 

correlation between the predicted and targeted thermal 

conductivities when the points are joined together (best fit-

points). The results demonstrate a very good agreement 

between the predicted and the desired values of thermal 

conductivity. Considering the inherent variation in the input 

dataset, the simplest ANN configuration can be considered. 

The simplest ANN model with 1-hidden layer and 10 

neurons predicted thermal conductivity with a 0.34% 

(0.0034 W/mK) MAE, 3.386 X 10
-4

 W/mK MRE and 

0.0011 W/mK SE being the least of all values of the error 

measures.  

 

Fig. 9. 2-hidden layers with 8 neurons 

 

Fig. 10. 1-hidden layers with 10 neurons 

4.4.2. Validating Dataset 

The performance of the optimal neural network was 

validated using a second dataset consisting of 16 cases not 

previously used in the training. Thermal conductivity 

values with an MRE of 0.0217 W/mK, MAE of 0.1544 

W/mK and SE of 0.0156 W/mK for 2-hidden layers with 8 

neurons were predicted. The graph between the predicted 

and the desired values of thermal conductivity for this 

model is shown in Fig. 11. There seemed to be no 

correlation between the predicted and the targeted thermal 

conductivities because of the few number of cases (16) 

used for the validating dataset, as compared to that used for 

the training set (36). 

This data set was also used with the simplest ANN 

configuration of one hidden layer consisting of ten neurons. 

The model predicted thermal conductivity with a 4.73% (or 

0.0473 W/mK) MRE, 25.6% (or 0.2559 W/mK) MAE and 

11.6% (or 0.1163 W/mK) SE. The graph between the 

predicted and the targeted values of thermal conductivity 

for the simplest ANN model is shown in Fig. 12. Similar 

reasons could also be given for the non-correlation between 

the predicted and targeted thermal conductivities for the 

validating dataset, that is, fewer numbers of cases (16) were 

used. 
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Fig. 11. 2-hidden layers with 8 neurons 

 

Fig. 12. 1-hidden layer with 10 neurons 

4.4.3. Predicted and Targeted Thermal Conductivities 

The thermal conductivity of the bakery products was 

modelled by simulation. As a result, both the predicted and 

targeted/desired thermal conductivity values are plotted 

separately against each of the three dependent variables as 

a function of moisture content (%), temperature (
o
C) and 

apparent density (kg/m
3
). The corresponding curves were 

obtained for the optimal ANN configuration; 2-hidden 

layers with 8 neurons (Figs. 13 to 15) and the simplest 

ANN configuration; 1-hidden layer with 10 neurons (Figs. 

16 to 18). 

For each of the corresponding diagrams, black triangles 

(π) represent the predicted thermal conductivity while 

purple stars (�) represent the targeted/desired thermal 

conductivity. Figs. 13 to 18 showed a considerable and 

first-rate agreement between the predicted and 

desired/targeted values of thermal conductivities as the 

points considered (shown as triangles and stars) intersected 

at some locations on the curves and nearly intersected at 

other locations. 

Since most of the triangle-points of the predicted values 

of thermal conductivity intersected with most of the star-

points of the thermal conductivity, it can be concluded that 

the predicted thermal conductivity is a good, efficient and 

credible prediction in comparison to the desired/targeted 

value (Figs. 13 to 18) for both the optimal and simplest 

ANN models. 

 

Fig. 13. Thermal conductivities vs. Temperature (2 hidden layers with 8 

neurons) 

 

Fig. 14. Thermal conductivities vs. Moisture content (2 hidden layers with 

8 neurons) 

 

Fig. 15. Thermal conductivities vs. Apparent density (2 hidden layers with 

8 neurons) 
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Fig. 16. Thermal conductivities vs. Temperature (1 hidden layer with 10 

neurons) 

 

Fig. 17. Thermal conductivities vs. Moisture content (1 hidden layer with 

10 neurons) 

 

Fig. 18. Thermal conductivities vs. Apparent density (1 hidden layer with 

10 neurons) 

Finally, there is a great disagreement or deviation 

between the predicted values of thermal conductivity and 

the targeted values when plotted against density for an 

ANN model that has 1 hidden layer with 4 neurons, as 

shown in Fig. 19. Similarly, when the predicted and 

targeted values of thermal conductivity are plotted against 

moisture content for an ANN model that has 2 hidden 

layers with 12 neurons, there was no agreement, as shown 

in Fig. 20. These ANN models are said to be inefficient 

models because of the non-intersection of most of their 

triangles and stars points. 

 

Fig. 19. Thermal conductivities vs. Apparent density (1 hidden layer with 

4 neurons) 

 

Fig. 20. Thermal conductivities vs. Moisture content (2 hidden layers with 

12 neurons) 

5. Conclusion 

In this paper, an ANN model was developed for 

calculating the thermal conductivity of a variety of bakery 

products under a wide range of conditions of moisture 

content, temperature and apparent density. The optimal 

model consisted of 2-hidden layers with eight neurons in 

each hidden layer, and was able to produce thermal 

conductivity values with a MAE of 54 X 10
-4

W/mK, MRE 

of 4.878 X10
-4

W/mK and a SE of 15 X 10
-4

W/mK (see 

Table 3). However, the simplest ANN model has 1-hidden 

layer with 10 neurons. This also showed a good prediction 

with a MRE of about 3.388 X 10
-4

 W/mK, MAE of 34 X 

10
-4

 W/mK and SE of 11 X10
-4

 W/mK (see Table 4). 

From these values, it can be deduced and concluded that 

the simplest ANN model (with 1-hidden layer and 10 

neurons), when compared with the optimal ANN model 

(with 2-hidden layers and 8 neurons in each hidden layer) 

has smaller mean relative error,smaller mean absolute error 

and lesser standard error. Therefore, this model performs 

better accordingly. 
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