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Abstract: Network control system (NCS) is a distributed real-time feedback control system with the continuous development 

of network technology. It is generally composed of network, controller, actuator and sensor. It has brought great convenience to 

people in many fields, but it also has many problems, which makes the research of control system more complicated. Recently, 

there have been some efforts to tackle the reliable guaranteed cost controller design problem, and some good results have also 

been obtained for the continuous-time and for the discrete-time. However, there have been few results in the literature of an 

investigation for the reliable guaranteed cost controller design of nonlinear uncertain systems with time-varying state delay and 

actuator failure. This paper concerns the reliable guaranteed cost control problem of uncertain systems with time-varying state 

delay and nonlinear perturbations for a given quadratic cost function. The problem is to design a reliable guaranteed cost state 

feedback control law which can tolerate actuator failures, such that the closed-loop system is asymptotically stable and the 

closed-loop cost function value is not more than a specified upper bound. Firstly, the existence condition of reliable guaranteed 

cost control law is given by constructing Lyapunov stability function and using linear matrix inequality (LMI). Secondly, the 

design method of the optimal reliable guaranteed cost controller is given by solving the convex optimization problem with LMI 

constraints, which minimizes the upper bound of guaranteed cost for closed-loop systems. In the end, the numerical simulation 

result illustrates the effectiveness of the proposed method. 
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1. Introduction 

The problem of designing robust controllers for systems 

with parameter uncertainties has drawn considerable attention 

in recent control system literatures. It is also desirable to 

design a control system which is not only stable but also 

guarantees an adequate level of performance. One approach to 

this problem is the so-called guaranteed cost control approach 

[1]. This approach has the advantage of providing an upper 

bound on a given performance index and thus the system 

performance degradation incurred by the uncertainties is 

guaranteed to be less than this bound. Based on this idea, some 

significant results have been proposed for the continuous-time 

case [2, 3] and for the discrete-time case [4]. Kao Y. designed 

a non-fragile H∞ guaranteed cost controller for uncertain long 

time delay nonlinear network control system with perturbation 

of controller parameters [5]. Yin combined the robust control 

theory to model the NCS, introduced performance indicators, 

established the internal relationship with network factors, and 

it also reduced the conservativeness of the results [6]. The 

controller design for Markov time-delay NCS has also 

achieved good results, and a design method to maintain NCS 

performance by switching feedback gain is proposed [7]. 

In practical application, actuators are very important in 

transforming the controller output to the plant. Actuator failures 

may be encountered sometimes. Furthermore, how to preserve 

the closed-loop system performance in the case of actuator 

failures will be tougher and more meaningful. Recently, there 

have been some efforts to tackle the reliable guaranteed cost 

controller design problem [8-10]. Yao took the uncertain 

nonlinear time-delay system as the controlled object, and 

designed a reliable guaranteed cost controller considering the 

actuator failure of the NCS [11-12]. Zhang J.-S. presented a 

guaranteed cost control method for multiple time delays and 
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actuator failures [13]. Zhu considered the simultaneous failure 

of the sensor and controller, and modeled as two time-varying 

and bounded parameters [14]. Sun first attempted to implement 

H∞ guaranteed cost control for switched T–S fuzzy stochastic 

systems with intermittent actuator [15]. For the same fault 

model, Zou redesigned the static output feedback controller, so 

that the system can keep stable and satisfy the original 

performance indexes no matter the actuator fails or not [16]. 

In this paper, the problem of reliable guaranteed cost 

control of uncertain systems with time-varying state delay and 

nonlinear perturbations is considered. In Section 2, the 

problem under consideration and some preliminaries are given. 

In section 3, several stability criteria for the existence of the 

reliable guaranteed cost controller are derived in terms of LMI, 

and their solutions provide a parameterized representation of 

the controller. A numerical example is given in Section 4. 

Finally, Section 5 concludes the paper. 

2. Problem Statement 

Consider the following uncertain systems with 

time-varying delay and nonlinear perturbations 

( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( , ( ), ( ( ))), ,

( ) ( ), [ ,0],

dx t A t x t A t x t t B t u t f t x t x t t t R

x t t t h

τ τ
φ

+= + − + + − ∈
= ∈ −

ɺ
               (1) 

where ( ) nx t R∈  is the state vector, 

1 2( ) ( ) ( ) ( )
T m

mu t u t u t u t R= ∈  ⋯  is the control vector, 

( ) : n nf R R R+⋅ × →  is the nonlinear uncertainties, being 

denoted f  in the following. ( )tτ  is the time-varying 

bounded delay satisfying 0 ( )t hτ≤ ≤ < ∞ , ( ) 1t dτ ≤ <ɺ , 

with h , d  being known. ( )A t , ( )dA t  and ( )B t  are matrix 

functions with time-varying uncertainties, that is 

( ) ( )A t A A t= + ∆ , ( ) ( )d d dA t A A t= + ∆ , ( ) ( )B t B B t= + ∆ , 

where A , dA  and B  are known real constant matrices of 

appropriate dimensions, ( )A t∆ , ( )dA t∆  and ( )B t∆  are 

uncertain matrices. ϕ is a given continuous vector-valued 

initial function on [ ,0]h− . 

Assumption 1. The parameter uncertainties considered are 

assumed to be bounded and of the form 

1 2[ ( ) ( ) ( )] ( ) [ ]d dA t B t A t DF t E E E∆ ∆ ∆ = ,      (2) 

where ( ) i jF t R ×∈  is an unknown matrix satisfying 

( ) ( )TF t F t I≤ , 1 2, , ,dE E E D  are known constant matrices 

of appropriate dimensions describing the structure of 

uncertainties. 

Assumption 2. The nonlinear uncertainty f  satisfies 

( ) ( ( )) ( ) ( ( ))
T

T T T T Tf f x t x t t H x k x t tτ τ   ≤ − −   
, (3) 

where H  is a known constant matrix satisfying 

{ }1 1 2 2Block-diag , 0T TH H H H H= > . 

Associated with this system is the cost function 

0
( ( ) ( ) ( ) ( ))T TJ x t Qx t u t Ru t dt

∞
= +∫ ,        (4) 

Where Q and R  are given positive-definite matrices. 

For the control input ( )iu t , 1,2, ,i m= ⋯ , let ( )F
iu t  denote 

the signal from the actuator that has failed. The following 

failure model is adopted in this paper: 

( ) ( ), 1, 2, , ,F
i i iu t u t i mα= = ⋯           (5) 

where 

0 , 1,2, ,i i i i mα α α≤ ≤ ≤ =⌢ ⌣
⋯           (6) 

with 1iα ≤⌢  and 1iα ≥⌣ . 

In the above model of actuator failure, if i iα α=⌢ ⌣
, then it 

corresponds to the normal case ( ) ( )F
i iu t u t= . When 0iα =⌣ , 

it covers the outage case. If 0iα >⌢ , it corresponds to the 

partial failure case, namely, partial degradation of the actuator. 

Denote 

{ }
{ }
{ }

1 2

1 2

1 2

1 2

( ) ( ) ( ) ( ) ,

diag , , , ,

diag , , , ,

diag , , , ,

T
F F F F

m

m

m

m

u t u t u t u t

α α α α

α α α α

α α α α

 =  

=

=

=

⋯

⌣ ⌣ ⌣ ⌣
⋯

⌢ ⌢ ⌢ ⌢
⋯

⋯

       (7) 

α  is said to be admissible if α  satisfies α α α≤ ≤⌢ ⌣
. 

The objective of this paper is to develop a procedure to 

design a memoryless state feedback control law 

( ) ( )u t Kx t= ,                     (8) 

such that for any admissible uncertain α , the resulting 

closed-loop system 

1 2( ) ( ) ( )

( ) ( ( )) , ,

( ) ( ), [ ,0],

d d

x t A B K DFE DFE K x t

A DFE x t t f t R

x t t t h

α α

τ
φ

+

= + + +

          + + − + ∈
= ∈ −

ɺ

    (9) 

is quadratically stable and the cost function (4) satisfies 
*J J≤ , where *J  is some specified constant. 

Definition 1. If there exists a control ( ) ( )u t Kx t=  and a 

positive scalar *J  such that for all admissible α , the 

closed-loop system (9) is quadratically stable and *J J≤ , 

then *J  is said to be a guaranteed cost and ( ) ( )u t Kx t=  is 
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said to be a reliable guaranteed cost control law for system (1) 

and cost function (4). 

Define 

{ } { }1 2 0 10 20 0diag , , , , diag , , , ,m mβ β β β β β β β= =⋯ ⋯ (10) 

where 

0, , 1, 2, , .
2

i i i i
i i

i i

i m
α α α αβ β

α α
+ −

= = =
+

⌢ ⌣ ⌣ ⌢

⋯⌣ ⌢       (11) 

From (7) and (10), we define 

0( )Iα α β= +                   (12) 

and 

0 0 ,Iα β≤ ≤             (13) 

where { }0 01 02 0diag , , , mα α α α= ⋯ , and 

{ }0 01 02 0diag , , , mα α α α= ⋯ . 

Lemma 1. (Schur complement). Given the constant matrices 

1 2 3, ,Ω Ω Ω  of appropriate dimensions, where 1 1
TΩ = Ω  and 

2 2 0TΩ = Ω > , then 

1
1 3 2 3 0T −Ω + Ω Ω Ω <  

if and only if 

1 3

3 2

0
T Ω Ω < 

Ω −Ω  
 or 

2 3

3 1

0
T

−Ω Ω 
< 

Ω Ω  
. 

Lemma 2. (Barmish [17]) Given matrices , ,Y H E  of 

appropriate dimensions and with Y  symmetric, then for all 

F  satisfying TF F I≤  and 

0T T TY HFE E F H+ + < , 

if and only if there exists 0ε >  such that 

1 0T TY HH E Eε ε −+ + < . 

Lemma 3. (Moon et al. [18]) Assume that pa R∈ , qb R∈ , 

and ,p qN R ×∈  then for any matrices p pX R ×∈ , p qY R ×∈ , 

q qZ R ×∈ , the following holds: 

2

T

T

T T

X Y Na a
a Nb

b bY N Z

−    
− ≤     −     

, 

if 

0
T

X Y

Y Z

 
≥ 

  
. 

3. Main Results 

Since it holds that 

( )
( ( )) ( ) ( )

t

t t
x t t x t x s ds

τ
τ

−
− = − ∫ ɺ . 

Then, rewrite system (9) in an equivalent form 

( )
( ) ( ) ( ) ( ) , ,

( ) ( ), [ ,0],

t

C D D
t t

x t A A x t A x s ds f t R

x t t t h

τ

φ

+

−
= + − + ∈

= ∈ −

∫ɺ ɺ

.  (14) 

where, 

1 2CA A B K DFE DFE Kα α= + + + , 

D d dA A DFE= + . 

The following Lyapunov-Krasovskii functional is applied 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + + ,          (15) 

where 

1( ) ( ) ( )TV t x t Px t= ,            (16) 

0

2
( )

( ) ( ) ( )
t

T

t t
V t x s Rx s dsd

τ θ
θ

− +
= ∫ ∫ ɺ ɺ ,      (17) 

3
( )

( ) ( ) ( )
t

T

t t
V t x Sx d

τ
τ τ τ

−
= ∫ .         (18) 

Then, the following theorem gives the delay-dependent 

reliable guaranteed cost control for the systems (1) and (4). 

Theorem 1. ( ) ( )u t Kx t=  is a reliable guaranteed cost 

control law if there exist positive-definite matrices P , S , R , 

matrices Y , Z , and a scalar 1 0ε > , such that for any 

admissible α , the following matrix inequalities hold: 

11 12 13

22 23

33

* 0

* *

Ψ Ψ Ψ 
 Ψ = Ψ Ψ < 
 Ψ 

,         (19) 

and 

0
*

Z Y

R

 
≥ 

 
,               (20) 

where ( )∗  denotes the symmetric element of a matrix, and
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1
11 1 1 1

12

13

1
22 1 2 2

23

1
33 1

,

,

,

(1 ) ,

,

,

T T T T T
C C C C

T
C D D

T
C

T T
D D

T
D

A hRA A P PA hZ Y Y S H H Q K R K

A hRA PA Y

A hR P

S d H H A hRA

A hR

hR I

ε α α

ε

ε

−

−

−

Ψ = + + + + + + + + +

Ψ = + −

Ψ = +

Ψ = − − + +

Ψ =

Ψ = −

                 (21) 

Moreover, the cost function (4) satisfies the following bound: 

0 0 0

( ) ( )
(0) (0) ( ) ( ) ( ) ( )

T T T

t t
J x Px x s Rx s dsd x Sx d

τ θ τ
θ τ τ τ

− −
≤ + +∫ ∫ ∫ɺ ɺ .                            (22) 

Proof. Taking ( ) ( )u t Kx t=  in the system (1), the resulting closed-loop system is given by (9). 

Differentiating 1( )V t  with respect to t  gives 

1

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

T T

T
t t

T
C D D C D D

t t t t

t
T T T T T

C D C D D
t t

V t x t Px t x t Px t

A A x t A x s ds f Px t x t P A A x t A x s ds f

x t A A P P A A x t x t PA x s ds x t Pf f Px t

τ τ

τ

− −

−

= +

   = + − +  + + − +   
   

 = + + + − + + 

∫ ∫

∫

ɺ ɺ ɺ

ɺ ɺ

ɺ

         (23) 

Taking 

DN PA= , X Z= , Y Y= , Z R= , ( )a x t= , ( )b x s= ɺ ,                           (24) 

we obtain 

( )
( ) ( )

( ) ( )

( )

( )

2 ( ) ( ) 2 ( ) ( )

( )
( ) ( )

( )

( ) ( ) ( ) ( )

( ( )) ( ) ( ) ( (

t t
T T

D D
t t t t

t DT T

T Tt t
D

t
T T T T

D D
t t

T T T T
D D

x t PA x s ds x t PA x s ds

Z Y PA x t
x t x s ds

x sY A P R

x t Y A P Y PA x t x s Rx s ds

x t t Y A P x t x t Y PA x t t

τ τ

τ

τ

τ τ

− −

−

−

− = −

−    ≤      −    

≤ − + − +

− − − − − −

∫ ∫

∫

∫

ɺ ɺ

ɺ
ɺ

ɺ ɺ

)) ( ) ( )
T

hx t Zx t+

          (25) 

Substituting (25) into (23) and using (3), we have 

( )

( )
1

1 1
1 1

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))

T T T T T T
C C D

t T
T T T T T T T T T

D
t t

V t x t A P PA Y Y hZ x t x t Pf f Px t x t Y PA x t t

x t t Y A P x t x s Rx s ds f f x t x t t H x t x t t
τ

τ

τ ε ε τ τ− −

−

 ≤ + + + +   + + − − − 

     − − −   + −   + − −   ∫

ɺ

ɺ ɺ

 

Differentiating 2( )V t  and 3( )V t  with respect to t  gives 

0

2
( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ( ) ( ( )) ] [ ( ) ( ( )) ] ( ) ( )

t
T T T T

t t t

t
T T

t t

t
T T

C D C D
t t

V t x t Rx t x t Rx t d t x t Rx t x s Rx s ds

hx t Rx t x s Rx s ds

h A x t A x t t f R A x t A x t t f x s Rx s ds

τ τ

τ

τ

θ θ θ τ

τ τ

− −

−

−

 = − + + = − 

≤ −

≤ + − + + − + −

∫ ∫

∫

∫

ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ
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3( ) ( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) (1 ) ( ( )) ( ( ))

T T

T T

V t x t Sx t t x t t Sx t t

x t Sx t d x t t Sx t t

τ τ τ

τ τ

= − − − −

≤ − − − −

ɺ ɺ

 

From the above inequalities, we can obtain 

1 2 3( ) ( ) ( ) ( )

( ) ( ) ( )[ ] ( )T T T

V t V t V t V t

t t x t Q K R K x tζ ζ α α

≤ + +

≤ Ψ − +

ɺ ɺ ɺ ɺ

,     (26) 

where 

{ }( ) ( ) ( ( ))t col x t x t t fζ τ= − .        (27) 

Then, the matrix inequality (19) implies that 

( ) ( )[ ] ( ) 0T TV t x t Q K R K x tα α< − + <ɺ .      (28) 

Noting that 0Q >  and 0R > , this implies that the system 

(9) is asymptotically stable by Lyapunov stability theory. 

Moreover, from (28) we have 

( )[ ] ( ) ( )T Tx t Q K R K x t V tα α+ < − ɺ ,       (29) 

by integrating both sides of (29) from 0 to fT , we obtain 

0

0 0 0

( ) ( )

0

( ) ( )

( )[ ] ( ) (0) ( )

(0) (0) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

f

f f

f f

T
T T

f

T T T T
f f

t t

T T
T T

t T T t

x t Q K R K x t dt V V T

x Px x T Px T x s Rx s dsd x Sx d

x s Rx s dsd x Sx d

τ θ τ

τ θ τ

α α

θ τ τ τ

θ τ τ τ

− −

− + −

+ < −

= + + +

   +    +

∫

∫ ∫ ∫

∫ ∫ ∫

ɺ ɺ

ɺ ɺ

            (30) 

As the closed-loop systems (9) is asymptotically stable 

when fT → ∞ , we get 

0

( )

( )

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

f

f

f

f

T
f f

T
T

t T

T
T

T t

x T Px T

x s Rx s dsd

x Sx d

τ θ

τ

θ

τ τ τ

− +

−

→

→

→

∫ ∫

∫

ɺ ɺ  

Hence, we get 

*

0
( ( ) ( ) ( ) ( )) (0)T Tx t Qx t u t Ru t dt V J

∞
+ ≤ =∫ .    (31) 

This completes the proof. 

In the sequel, we will show that the criterion for the 

existence of guaranteed cost controller is equivalent to the 

feasibility of a LMI. 

Theorem 2. For system (1) with cost function (4), if there 

exist scalars 1 0ε > , 2 0ε > , matrices 0X > , 0Z > , 

0M > , 0 0R > , such that the following LMI is feasible: 

1 1 2

1 1

1 1
2

2

1

( ) ( )

* ( 1) 0 ( ) ( ) 0

* * 0 0

* * * 0 0

* * * * 0

* * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

T T T
d

T T
d d

T

A M I AX B W E X E W W

d M A M E M

I I

h R DD

I

R

ε β β β

ε ε
ε

ε

− −

−

Ω + +


−
 −
 − +


−


−












0 0 1

2

0

2 0

0

0

0

1

1

1 1

1

( ) 0

0 0 0 ( ) 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

00 0 0 0 0 0

* 0 0 0 0 0

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T T T T T

T

BR W H X X X X

H M

BR

E R

R

R

R

I

I

h Z

Q

M

ββ

ε
ε

− −

−












<− 
−

−
− 
−

−


− 

, (32) 

where 

2

1 1 1

( ) ,

, , ,

T TAX BW AX BW DD

X P W KP M S

ε
− − −

Ω = + + + +

= = =
 

then 
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1( ) ( )u k WX x k−=                                             (33) 

is a reliable guaranteed cost controller of system (1), and the corresponding closed-loop value of the cost function satisfies 

0 0 0
1 1

( ) ( )
(0) (0) ( ) ( ) ( ) ( )

T T T

t t
J x X x x s Rx s dsd x M x d

τ θ τ
θ τ τ τ− −

− −
≤ + +∫ ∫ ∫ɺ ɺ .                  (34) 

Proof. Letting 0Y ≡  and 0Z >  in (20), in light of Lemma 2 and using the Schur complement, we can obtain 

11

1
1 2 2

1
1

1 1

* (1 ) 0
0

* *

* * *

T T
C C D C

T T
D

A hRA PA P A

S d H H A

I I

h R

ε
ε

−

−

− −

 Ψ −
 

− − + 
< 

− 
 − 

,                          (35) 

substituting the representation of matrix CA , DA  into (35), and using the Schur complement again, we can obtain 

1
1 2 2

1
1

* (1 ) 0

* *

* * *

* * *

d

T

PA P

S d H H

I

ε
ε

−

−

Γ


− − +
 −




 

1 2

1 1
2

2

( ) ( )

00

0

*

T T

T T
d d

T

A B K E E K

A E

I

h R DD

I

α α

ε
ε

− −

+ +


 <

− +


− 

, 

where, 

1
1 1 1 2( ) ( )T T T TA B K P P A B K hZ S H H Q K R K PDD Pα α ε α α ε−Γ = + + + + +  + + + + . 

Using the Schur complement again, and by (12), (13), we can get 
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−
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

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            
− +


− 


− 

   
   
   
   

+ +   
   
   
   
      

[ ]0 0 0 0 0 0 0,

T

Kα β

 
 
 
 
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 
 
 
 
 

 

where 

1
1 1 1 1 2( ) ( )T T TA B K P P A B K hZ S H H Q PDD Pβ β ε ε−Γ = + + + +  + + + + . 

Using the inequality 2 T T Ta b a a b b≤ +  for any diagonal matrix 0 0R > , it follows that 
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1 1 2 0
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1 2 2

1
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1
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* * * 0 0 0
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* * * * * 0
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R

R
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ε

ε
ε

ε
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−
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−

−

 Γ + +
 

− − + 
 

− 
 − +  <
 −
 

− 
 

− 
 − 

  

Pre- and post-multiplying both sides of the above inequality 

by TΠ  and Π , where 

{ }1 1
1 0diag , , , , , , ,P S I I I I R Iε− −Π = ,     (36) 

we can obtain (32). This completes the proof. 

Theorem 2 presents a method of designing a state feedback 

reliable guaranteed cost controller. The following theorem 

presents a method of selecting a controller minimizing the 

upper bound of the guaranteed cost (34). 

Theorem 3. Consider the systems (1) with performance 

index (4), if the following optimization problem 

1 2min ( ) ( )tr trξ + Γ + Γ  

(i) (32) , 

(ii) 
(0)

0
(0)

Tx

x X

ξ − < 
−  

, 

(iii) 
1

1
0

TC

C R−

 −Γ
< 

−  
, 

(iv) 2 0
TD

D M

 −Γ < 
−  

,                         (37) 

has a solution set 1 2( , , , )X ξ Γ Γ , then the controller (33) is 

an optimal reliable guaranteed cost control law which 

ensures the minimization of the guaranteed cost (34) for 

system (1), where 

0 0

( )

0

( )

( ) ( ) ,

( ) ( )

T T

t

T T

t

x s x s dsd C C

x x d D D

τ θ

τ

θ

τ τ τ

−

−

=

=

∫ ∫

∫

ɺ ɺ

        (38) 

Proof. By Theorem 2, (i) in (37) is clear. It follows Lemma 

1 that (ii)-(iv) in (37) are equivalent to 

1 1
1 2(0) (0) , , ,T T Tx X x C RC D M Dξ− −< < Γ < Γ     (39) 

respectively. Furthermore, 

0 0 0 0

( ) ( )

1

( ) ( ) ( ( ) ( ))

( ) ( )

T T

t t

T

x s Rx s dsd tr x s Rx s dsd

tr C RC tr

τ θ τ θ
θ θ

− −
   =

= < Γ

∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ

,                         (40) 

and 

0
1

( )

0
1

( )

1
2

( ) ( )

( ( ) ( ))

( ) ( )

T

t

T

t

T

x M x d

tr x M x d

tr D M D tr

τ

τ

τ τ τ

τ τ τ

−

−

−

−

−

   

=

= < Γ

∫

∫ .                                     (41) 

Hence, it follows from (34) that 

0 0 0
* 1 1

( ) ( )

1 2

(0) (0) ( ) ( ) ( ) ( )

( ) ( )

T T T

t t
J x X x x s Rx s dsd x M x d

tr tr

τ θ τ
θ τ τ τ

ξ

− −

− −
= + +

≤ + Γ + Γ

∫ ∫ ∫ɺ ɺ

                   (42) 

Thus, the minimization of (42) implies the minimization of the guaranteed cost for the system (1). The optimality of the 

solutions of the optimization problem (37) follows from the convexity of the objective function and of the constraints, which 

ensures that a global optimum, when it exists, is reachable. This completes the proof. 
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4. Simulations 

Consider the systems with time-varying delay in (1)-(4) with 

0 1

9 0
A

 
=  
 

, 
3

1
B

 
=  
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0 0.1 0
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 

, 

1

1 1

0 0

0 0

E

 
 =  
  

, 2

0

1

0

E

 
 =  
  

,

0 0

0 0

1 1

dE

 
 =  
  

, 1 2

0.1 0

0 0.1
H H

 
= =  

 
, 

{ }diag 1, 1 , 0.2, 1, 0.5,Q R h d= = = =  
0.1 0

0 0.1
Z

 
=  
 

. 

It is assumed that the single input to the system has partial failure as follows: 

0.8α =⌢ , 1.2α =⌣ . 

By applying Theorem 3 and solving the corresponding optimization problem (37), the optimal solution is given by 

0.2620 0.3360

0.3360 0.9191
X

− 
=  − 

, [ ]0.7521 0.2579W = − − , 53.1304ξ = , 

1

0.6677 0

0 0.0288

 
Γ =  

 
, 2

11.3919 0

0 0.0288

 
Γ =  

 
. 

Then, the optimal reliable guaranteed cost controller is 

given by 

[ ]( ) 6.0845 2.5053 ( )u k x k= − − , 

and the upper bound of the corresponding closed-loop cost 

function is * 65.2476J = . 

5. Conclusions 

In this paper, based on the Lyapunov method, we have 

presented a design method to the reliable guaranteed cost 

controller via memoryless state feedback control for uncertain 

systems with time-varying state delay and nonlinear 

perturbations in an LMI framework. The parameterized 

representation of a set of the controller, which guaranteed not 

only the robust stability of the closed-loop system but also the 

cost function bound constraint, has been provided in terms of 

the feasible solutions to the LMIs. Furthermore, a convex 

optimization problem has been introduced to select the 

optimal reliable guaranteed cost controller. Finally, a 

numerical example is given for illustration of the controller 

design. 
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