
 
Advances in Applied Sciences 
2020; 5(3): 70-74 
http://www.sciencepublishinggroup.com/j/aas 
doi: 10.11648/j.aas.20200503.13 
ISSN: 2575-2065 (Print); ISSN: 2575-1514 (Online)  

 

Analysis of Anharmonic EXAFS Spectra of Crystalline 
Nickel Using High-order Debye-Waller Factors 

Tong Sy Tien1, *, Le Viet Hoang2, Nguyen Ngoc Thang3, Bui Ba Manh3, Nguyen Huu Hieu3,  
Nguyen Thi Ngoc Anh3, Duong Thanh Cong4, Nguyen Hong Nhung4, Nguyen Thi Thanh Nhan5 

1Institute of Research & Development, Duy Tan University, Danang, Vietnam 
2Department of Physics, Hanoi University of Science, Hanoi, Vietnam 
3Department 2, University of Fire, Hanoi, Vietnam 
4Department 10, University of Fire, Hanoi, Vietnam 
5Department 1, University of Fire, Hanoi, Vietnam 

Email address: 
 

*Corresponding author 

To cite this article: 
Tong Sy Tien, Le Viet Hoang, Nguyen Ngoc Thang, Bui Ba Manh, Nguyen Huu Hieu, Nguyen Thi Ngoc Anh, Duong Thanh Cong, Nguyen 

Hong Nhung, Nguyen Thi Thanh Nhan. Analysis of Anharmonic EXAFS Spectra of Crystalline Nickel Using High-order Debye-Waller 

Factors. Advances in Applied Sciences. Vol. 5, No. 3, 2020, pp. 70-74. doi: 10.11648/j.aas.20200503.13 

Received: June 25, 2020; Accepted: July 14, 2020; Published: August 5, 2020 

 

Abstract: The extended X-ray absorption fine structure (EXAFS) has been developed into a powerful technique and is 
widely applied to determine many structural parameters and dynamic properties of materials. The EXAFS technique is now the 
technique of choice in many materials science investigations, and the EXAFS data analysis is being performed in many 
laboratories spread around the world. In this work, the anharmonic EXAFS spectra of crystalline nickel (Ni) has been analyzed 
based on the quantum anharmonic correlated Einstein model. The anharmonic EXAFS oscillation presented in terms of the 
Debye-Waller factors using the cumulant expansion approach up to the fourth-order. This calculation model has been 
developed from the high-order anharmonic effective potential that described the contribution of their nearest-neighbor atoms to 
the pair interaction potential. The analytical expressions of the anharmonic EXAFS cumulants are not only explicit forms but 
also satisfy all of their fundamental properties in temperature dependence. The analysis of the anharmonic EXAFS spectra was 
performed by evaluating the contributions of the cumulants to the amplitude reduction and the phase shift of the anharmonic 
EXAFS oscillation. The numerical results for Ni were in good agreement with those obtained using the other theoretical 
methods and experiment at various temperatures, which are useful for analyzing the experimental EXAFS data of the metal 
crystals. 

Keywords: EXAFS Analysis, Einstein Model, Quantum Statistical Theory, Crystalline Nickel 

 

1. Introduction 

The structural parameters and dynamic properties of 
materials can be determined from the extended X-ray 
absorption fine structure (EXAFS) technique [1-5]. The use of 
the moments of the radial distribution function (or cumulants) 
to investigate local disorder of EXAFS spectra was introduced 
by Rehr (1979) [10] who showed that the Debye-Waller (DW) 
factors of EXAFS spectra has a natural cumulant expansion in 
powers of the photoelectron wavenumber. The connection 
between the Debye-Waller (DW) factors and the EXAFS 

cumulants was described in detail in the cumulant expansion 
approach (ratio method) by Bunker (1983) [7] and exploited 
by Tranquada & Ingalls (1983) [11]. The ratio method is 
particularly appealing because it summarizes the relevant 
structural and dynamic information that easily obtained from 
the experimental EXAFS spectra [8, 9, 12-14]. However, the 
position of atoms is not stationary, and their interatomic 
distance always changes due to thermal vibrations [4-6] that 
were detected by Beni & Platzman (1976) [2] and Eisenberger 
& Brown (1979) [3]. They cause anharmonic effects on crystal 
vibrations and smear out the EXAFS oscillations [3, 6]. The 
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anharmonicity of the potential yields additional terms in the 
EXAFS oscillation [3, 5, 10], so if ignoring these terms, it can 
lead to non-negligible errors in the structural parameters [11-15]. 

Many efforts have been performed to calculate the 
cumulants for including anharmonic effects in the EXAFS 
spectra by many various approaches such as the full lattice 
dynamic approach [16], the path-integral effective-potential 
method [17, 18], the equation of motion method [19], the 
path-integral Monte Carlo calculation [20, 21], and the 
density functional theory calculation [22, 23]. The 
anharmonic EXAFS oscillation is expanded as a series of 
cumulants of the interatomic distance distribution, which is 
effectively achieved in analyzing experimental EXAFS 
spectra [8, 11, 12]. Although each approach has certain 
limitations, the importance of including higher-order 
cumulants in the anharmonic EXAFS analysis has been 
recognized in many works [8, 11-13, 17, 24]. 

Recently, the quantum anharmonic correlated Einstein 
(QACE) model using the first-order perturbation was 
developed by Tien (2020) [25]. It calculates the first four 
EXAFS cumulants and analyzes the EXAFS amplitude and 
phase of FCC crystal. It has also been applied to successfully 
investigate crystalline copper (Cu) successfully but has not 
yet investigated crystalline nickel (Ni). Therefore, the 
analysis of the anharmonic EXAFS spectra of Ni by using the 
QACE model will be a necessary addition to evaluate the 

effectiveness of the QACE model. The purpose of this work 
is to calculate and estimate the role of the EXAFS cumulants 
in analyzing the anharmonic EXAFS oscillation of Ni by 
using the QACE model. 

2. Basic Formulae of EXAFS Function 

The EXAFS oscillation for a single coordination shell, 
including thermal disorders has the form: 

( ) ( ), , sin ( , )k T A k T k Tχ = Φ ,                      (1) 

where ( ),A k T  and ( , )k TΦ  are the EXAFS amplitude and 

phase, respectively, and k  is the photoelectron wavenumber 
[6-8], and T is the temperature. 

The K-edge EXAFS oscillation for the distribution of 
identical atoms is described within the framework of single-
scattering and plane-wave approximations [7, 8, 11, 12]. 
Following the approach from Ref. 25, the logarithm of 
amplitude ratio ( ) ( ) ( )1 2 2 1, , ln , ,M k T T A k T A k T =  

 and the 

linear phase difference ( ) ( ) ( )1 2 2 1, , , ,k T T k T k T∆Φ = Φ − Φ  

between temperatures 2T  and 1T  in the cumulant expansion 

approach up to the fourth order, which are given as follows: 
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where ( )nσ  are n th-order cumulants and can be expressed in 
terms of the power moments of the true RD function 

( ),T rρ . 

To determine the thermodynamic parameters of a system, 
it is necessary to specify its anharmonic effective potential 
and force constants [15, 20, 24, 25]. For metal crystals, the 
anharmonic effective (AE) potential was used effectively in 
many works [26-30]. In the relative vibrations of absorbing 
(A) and backscattering (B) atoms, including correlation 
effects and taking into account only the nearest-neighbor 
interactions, the AE model [15] is given by 

, ,

ˆ ˆ( ) ,eff AB ij

ii A B j A B

V V x V xR R
M

µ

= ≠

 
= +  

 
∑ ∑              (4) 

where ( )/A B A BM M M Mµ = +  is the reduced mass of the 

absorber and backscatterer with masses MA and MB, 

respectively, R̂  is a unit vector, the sum i is the over 
absorbers ( i A= ) and backscatterers ( i B= ), and the sum j is 
over the nearest neighbors. 

The Morse potential was proposed by Girifalco and Weizer 
(1959) [31] to calculate the efficiency of the interaction energy 

between each pair of atoms in cubic metals. The Morse potential 
was expanded up to the fourth-order in the form as 

( )2 2 2 3 3 4 47
( ) 2

12
x xV x D e e D D x D x D xα α α α α− −= − ≅ − + − + .  (5) 

where x is the same previously defined value, α  describes 
the width of the potential, and D is the dissociation energy. 

 

Figure 1. Structural model of Ni. 

Applying Eqs. (4) and (5) to the structure of Ni with a 
mass of atoms is A BM M m= = , as seen in Figure 1, the AE 

potential is written as 
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2 2 3 3 4 45 5 133
( )

2 4 192effV x D x D x xα α α= − + .        (6) 

The local force constants 0k , k3, and k4 are deduced from 

Eq. (6) as follows: 

2 3 4
0 3 4

5 133
5 , ,

4 192
k D k D k Dα α α= = = .      (7) 

The thermal vibration of atoms is characterized by the 
correlated Einstein frequency 

Eω  and temperature 
Eθ , 

which are calculated from the effective force constant 0k in 

the following forms: 

10 10
,

eff E
E E

B B

k D D

m k k m

ω αω α θ
µ

= = = =
ℏ ℏ ,   (8) 

where kB is the Boltzmann constant, ℏ  is the reduced Planck 
constant. 

Consequently, the correlated Einstein frequency Eω  and 

temperature Eθ , and the force constants 0 3,k k , and 4k  are 

expressed in terms of the Morse potential parameters via Eqs. 
(7) and (8). 

3. Temperature Dependence of EXAFS 
Cumulants Within the QACE Model 

The EXAFS cumulants are explicitly related to low-order 
moments of the distribution function [32]. The analysis of the 
EXAFS spectra usually uses the first four EXAFS cumulants 
[8, 10, 12, 33]. The expressions of the first four cumulants 
within the QACE model are given as follows [25]: 
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where the parameter /E T
z e

θ−= , the calculations of the 
EXAFS cumulants use the local force constants k0, k3, and k4, 
and the correlated Einstein temperature Eθ  are determined 

from in Eqs. (7) and (8). 
Thus, the results of the first four EXAFS cumulants are 

calculated using the QACE model can satisfy all of their 
fundamental properties in temperature dependence. These 
obtained results can describe both the influence of quantum 
effects on the vibrational energy at low temperatures and the 
influence of anharmonic effects on the classical limit at high 
temperatures. 

4. Numerical Results and Discussions 

To discuss the effectiveness of the QACE model for the 

analysis of the EXAFS spectra of Ni in this work, we apply Eqs. 

(2)-(3) in Sec. 2 and Eqs. (9)-(12) in Sec. 3 to the numerical 

calculations for Ni. Our results are compared with those 

obtained using the ACD model [34], the path-integral effective-

potential (PIEP) method was developed to solve the path 

integral approximately by means of the variational concept [17]. 

Our results are also compared with the experimental values 

obtained by Pirog et al. (2002) [35] at the Synchrotron Radiation 

Siberian Center, Russia, and obtained by Yokoyama et al. 

(1998) [17] at Beamline 10B in the Photon Factory of the 

Institute of Materials Structure Science, Tsukuba, Japan. From 

these comparisons, we evaluate and comment on the results 

obtained using the QACE model in this work. 

Table 1. The thermodynamic parameters 0 3 4, , , ωEk k k , and Eθ  of Ni 

obtained using the QACE model and experiment [35]. 

Method 0k  

(eVÅ-2) 
3k  

(eVÅ-3) 
4k  

(eVÅ-4) 
Eω  (×

1013Hz) 
Eθ  

(K) 
CACE modela 4.2 1.5 1.2 3.7 284.3 

Experimentb 3.9 1.6 1.7 3.6 272.7 

a This work. 
b Reference 35. 

 

Figure 2. Temperature dependence of (a) the first, (b) second, (c) third, and 

(d) fourth EXAFS cumulants of Ni obtained using the QACE model (solid 

blue lines), the ACD model [34] (dotted magenta lines), the PIEP method 

[17] (green multiplication signs), and the other experiments [17] (full yellow 

diamonds) and [35] (full red hexagrams). 
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The thermodynamic parameters 0 3 4, , , Ek k k ω , and Eθ  of 

Ni are calculated using the Morse potential parameters 
0.4205D =  eV and 1.4199α = Å-1 [31] via Eqs. (7)-(8) and 

given in Table 1. These calculations. Our results agree with 
those obtained from the experiment [35], especially for the 
force constants 0k and k3, and the correlated Einstein 

frequency Eω  and temperature Eθ . 

The temperature dependence of (a) the first cumulant 
(1) ( )Tσ , (b) the second cumulant 2 ( )Tσ , (c) the third 

cumulant ( )3 ( )Tσ , and (d) the fourth cumulant ( )4 ( )Tσ  of 
Ni is calculated by Eqs. (9)-(12) and shown in Figure 2. Our 
obtained results using the QACE model agree well with the 
results obtained using the ACD model [34], the PIEP method 
(for the second and third cumulants) [17], and the other 
experiments [17] (for the second and third cumulants) and 
[35]. Compared with the experiments [17, 35], our results 
agreed better than the obtained results using the ACD model 
[34], especially for high-order cumulants (the third and 
fourth cumulants) and at high temperatures. For example, at 
300 K, the results obtained using the CACE model, the 
ACD model, the QACE model, and the PIEP method are 

( )1 37.0 10σ −×≃ Å, ( )2 36.5 10σ −×≃ Å2, ( )3 58.1 10σ −×≃ Å3, 

and ( )4 61,6 10σ −×≃ Å4, ( )1 36.9 10σ −×≃ Å, ( )2 36.5 10σ −×≃ Å2, 
( )3 57.6 10σ −×≃ Å3, and ( )4 61,4 10σ −×≃ Å4 [34], and 
( )2 35.7 10σ −×≃ Å2 and ( )3 57.7 10σ −×≃ Å3 [17], respectively, 

while the experimental values are ( )1 35.9 10σ −≈ × Å, 
( )2 36.8 10σ −≈ × Å2, ( )3 59.2 10σ −≈ × Å3, and ( )4 61,9 10σ −≈ × Å4 

at 293 K [35], ( )2 35.8 10σ −≈ × Å2 and ( )3 58.6 10σ −≈ × Å3 at 

300 K [17]. 
Thus, the calculated results of the first four EXAFS 

cumulants of Ni by the QACE model are in agreement with 
those obtained using the other theoretical methods and 
experiments at various temperatures. It shows that the 
efficiency of the QACE model in calculating the EXAFS 
cumulants for metal crystals. 

 

Figure 3. Wavenumber and temperature dependence of (a) the logarithm of 

amplitude ratio (blue mesh-surfaces) and (b) the phase difference (red mesh-

surfaces) with reference value at Eθ  of Ni obtained using the QACE model. 

The wavenumber and temperature dependence of (a) the 
logarithm of amplitude ratio ( ) ( ) ( ), ln , , EM k T A k T A k θ =    
and (b) the phase difference ( ) ( ) ( ), , , Ek T k T k θ∆Φ = Φ − Φ  
of Ni is calculated by Eqs. (2)-(3) and shown in Figure 2. 
Herein, our calculations used the QACE model to determine 
the EXAFS cumulants via Eqs. (9)-(12). It can be seen that 
the results of ( ),M k T  and ( ),k T∆Φ  decrease with 

increasing temperature T and decrease with fast-increasing 
wavenumber k. For example, at T = 400 K, our calculated 
results are ( ), 0.41M k T −≃  and ( ), 0.09k T∆Φ −≃  rad at 

10k = Å-1, and ( ), 1.48M k T −≃  and ( ), 0.73k T∆Φ −≃  rad 
at 20k = Å-1, while the corresponding results at T = 600K are 

( ), 1.11M k T −≃  and ( ), 0.32k T∆Φ −≃  rad at 10k = Å-1, and 
( ), 3.66M k T −≃  and ( ), 2.57k T∆Φ −≃  rad at 20k = Å-1. 

Thus, the cumulants are very important for the quantitative 
analysis of the anharmonic EXAFS spectra, in which the 
even-order cumulants contribute to the amplitude reduction, 

and the odd-order cumulants contribute primarily to the 
phase shift of the anharmonic EXAFS oscillation. Accurate 
calculation of the EAFS cumulants will allow us to accurately 

analyze the change of the anharmonic EXAFS spectra, and 
from which one will determine the structural parameters from 
the experimental EXAFS data. 

5. Conclusions 

In this work, the QACE model has been used successfully 
in the analysis of the anharmonic EXAFS spectra. The 
EXAFS analysis is performed based on evaluating the 
contribution of the DW factors to the amplitude reduction 
and phase shift in the cumulant expansion approach up to 
fourth-order. These analytical results show the role of the 
high-order EXAFS cumulants in the anharmonic EXAFS 
oscillation.  

Although the QACE model uses a one-dimensional model, 
three-dimensional interactions were taken into account via a 
simple procedure. It derived from the anharmonic effective 
potential that includes all of the nearest-neighbor interactions 
of the absorbing and backscattering atoms. 

The good agreement of our numerical results for Ni with 
those obtained using the ACD model, the PIEP method, and 
the other experiments at various temperatures show the 
effectiveness of the QACE model for calculating and 
analyzing the anharmonic EXAFS oscillation. These 
numerical results are very useful for analyzing the data of the 
anharmonic EXAFS spectra of the metal crystals. 
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